Skip to main content
Log in

On the numerical modeling of the deep mantle water cycle in global-scale mantle dynamics: The effects of the water solubility limit of lower mantle minerals

  • Invited Review
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Water is the most important component in Earth system evolution. Here, I review the current understanding of the fate of water in the mantle dynamics system based on high-pressure and temperature experiments, geochemical analyses, seismological and geomagnetic observations, and numerical modeling of both regional- and global-scale mantle dynamics. In addition, as a numerical example, I show that the water solubility of the deep mantle is strongly sensitive to global-scale water circulation in the mantle. In a numerical example shown here, water solubility maps as functions of temperature and pressure are extremely important for revealing the hydrous structures in both the mantle transition zone and the deep mantle. Particularly, the water solubility limit of lower mantle minerals should be not so large as ~100 ppm for the mantle transition zone to get the largest hydrous reservoir in the global-scale mantle dynamics system. This result is consistent with the current view of mantle water circulation provided by mineral physics, which is also found as a hydrous basaltic crust in the deep mantle and the water enhancement of the mantle transition zone simultaneously. In this paper, I also discuss some unresolved issues associated with mantle water circulation, its influence on the onset and stability of plate motion, and the requirements for developing Earth system evolution in mantle dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Abe, Y., Matsui, T., 1988. Evolution of an Impact-Generated H2O-CO2 Atmosphere and Formation of a Hot Proto-Ocean on Earth. Journal of the Atmospheric Sciences, 45(21): 3081–3101. doi:10.1175/1520-0469(1988)045<3081:eoaigh>2.0.co;2

    Article  Google Scholar 

  • Arcay, D., Tric, E., Doin, M. P., 2005. Numerical Simulations of Subduction Zones: Effect of Slab Dehydration on the Mantle Wedge Dynamics. Physics of the Earth and Planetary Interiors, 149(1/2): 133–153. doi:10.1016/j.pepi.2004.08.020

    Article  Google Scholar 

  • Arthur, M. A., Cole, D. R., 2014. Unconventional Hydrocarbon Resources: Prospects and Problems. Elements, 10(4): 257–264. doi:10.2113/gselements.10.4.257

    Article  Google Scholar 

  • Aubaud, C., Hirschmann, M. M., Withers, A. C., et al., 2008. Hydrogen Partitioning between Melt, Clinopyroxene, and Garnet at 3 GPa in a Hydrous MORB with 6 wt.% H2O. Contributions to Mineralogy and Petrology, 156(5): 607–625. doi:10.1007/s00410-008-0304-2

    Article  Google Scholar 

  • Bercovici, D., Karato, S.-I., 2003. Whole-Mantle Convection and the Transition- Zone Water Filter. Nature, 425(6953): 39–44. doi:10.1038/nature01918

    Article  Google Scholar 

  • Bercovici, D., Ricard, Y., 2014. Plate Tectonics, Damage and Inheritance. Nature, 508(7497): 513–516. doi:10.1038/nature13072

    Article  Google Scholar 

  • Bercovici, D., Ricard, Y., 2016. Grain-Damage Hysteresis and Plate Tectonic States. Physics of the Earth and Planetary Interiors, 253: 31–47. doi:10.13039/100000001

    Article  Google Scholar 

  • Bolfan-Casanova, N., 2005. Water in the Earth’s Mantle. Mineralogical Magazine, 69(3): 229–258. doi:10.1180/0026461056930248

    Article  Google Scholar 

  • Christensen, U. R., Hofmann, A. W., 1994. Segregation of Subducted Oceanic Crust in the Convecting Mantle. Journal of Geophysical Research: Solid Earth, 99(B10): 19867–19884. doi:10.1029/93jb03403

    Article  Google Scholar 

  • Coltice, N., Rolf, T., Tackley, P. J., et al., 2012. Dynamic Causes of the Relation between Area and Age of the Ocean Floor. Science, 336(6079): 335–338. doi:10.1126/science.1219120

    Article  Google Scholar 

  • Condie, K. C., 2016. A Planet in Transition: The Onset of Plate Tectonics on Earth between 3 and 2 Ga?. Geoscience Frontiers, doi:10.1016/j.gsf.2016.09.001

    Google Scholar 

  • Crameri, F., Tackley, P. J., Meilick, I., et al., 2012. A Free Plate Surface and Weak Oceanic Crust Produce Single-Sided Subduction on Earth. Geophysical Research Letters, 39(3): L03306. doi:10.1029/2011gl050046

    Article  Google Scholar 

  • Crowley, J. W., Gérault, M., O’Connell, R. J., 2011. On the Relative Influence of Heat and Water Transport on Planetary Dynamics. Earth and Planetary Science Letters, 310(3/4): 380–388. doi:10.1016/j.epsl.2011.08.035

    Article  Google Scholar 

  • Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth’s Interior. Earth and Planetary Science Letters, 298(1/2): 1–13. doi:10.1016/j.epsl.2010.06.039 de

    Article  Google Scholar 

  • Smet, J. H., van den Berg, A. P., Vlaar, N. J., 1998. Stability and Growth of Continental Shields in Mantle Convection Models Including Recurrent Melt Production. Tectonophysics, 296(1/2): 15–29. doi:10.1016/s0040-1951(98)00135-8

    Article  Google Scholar 

  • Fei, H. Z., Wiedenbeck, M., Yamazaki, D., et al., 2013. Small Effect of Water on Upper-Mantle Rheology Based on Silicon Self-Diffusion Coefficients. Nature, 498(7453): 213–215. doi:10.1038/nature12193

    Article  Google Scholar 

  • Foley, B. J., Becker, T. W., 2009. Generation of Plate-Like Behavior and Mantle Heterogeneity from a Spherical, Viscoplastic Convection Model. Geochemistry, Geophysics, Geosystems, 10(8): Q08001. doi:10.1029/2009gc002378

    Article  Google Scholar 

  • Foley, B. J., Driscoll, P. E., 2016. Whole Planet Coupling between Climate, Mantle, and Core: Implications for Rocky Planet Evolution. Geochemistry, Geophysics, Geosystems, 17(5): 1885–1914. doi:10.13039/100000104

    Article  Google Scholar 

  • Franck, S., Kossacki, K. J., von Bloh, W., et al., 2002. Long-Term Evolution of the Global Carbon Cycle: Historic Minimum of Global Surface Temperature at Present. Tellus B, 54(4): 325–343. doi:10.1034/j.1600-0889.2002.201377.x

    Google Scholar 

  • Fujita, K., Ogawa, M., 2013. A Preliminary Numerical Study on Water- Circulation in Convecting Mantle with Magmatism and Tectonic Plates. Physics of the Earth and Planetary Interiors, 216: 1–11. doi:10.1016/j.pepi.2012.12.003

    Article  Google Scholar 

  • Gaidos, E., Deschenes, B., Dundon, L., et al., 2005. Beyond the Principle of Plentitude: A Review of Terrestrial Planet Habitability. Astrobiology, 5(2): 100–126. doi:10.1089/ast.2005.5.100

    Article  Google Scholar 

  • Genda, H., 2016. Origin of Earth’s Oceans: An Assessment of the Total Amount, History and Supply of Water. Geochemical Journal, 50(1): 27–42. doi:10.2343/geochemj.2.0398

    Article  Google Scholar 

  • Gerya, T. V., Connolly, J. A. D., Yuen, D. A., 2008. Why is Terrestrial Subduction One-Sided?. Geology, 36(1): 43. doi:10.1130/g24060a.1

    Article  Google Scholar 

  • Gerya, T. V., Stern, R. J., Baes, M., et al., 2015. Plate Tectonics on the Earth Triggered by Plume-Induced Subduction Initiation. Nature, 527(7577): 221–225. doi:10.1038/nature15752

    Article  Google Scholar 

  • Gerya, T., 2012. Origin and Models of Oceanic Transform Faults. Tectonophysics, 522/523: 34–54. doi:10.1016/j.tecto.2011.07.006

    Article  Google Scholar 

  • Gillmann, C., Golabek, G. J., Tackley, P. J., 2016. Effect of a Single Large Impact on the Coupled Atmosphere-Interior Evolution of Venus. Icarus, 268: 295–312. doi:10.1016/j.icarus.2015.12.024

    Article  Google Scholar 

  • Gillmann, C., Tackley, P., 2014. Atmosphere/Mantle Coupling and Feedbacks on Venus. Journal of Geophysical Research: Planets, 119(6): 1189–1217. doi:10.1002/2013je004505

    Google Scholar 

  • Hamano, K., Abe, Y., Genda, H., 2013. Emergence of Two Types of Terrestrial Planet on Solidification of Magma Ocean. Nature, 497(7451): 607–610. doi:10.1038/nature12163

    Article  Google Scholar 

  • Hernlund, J. W., Tackley, P. J., 2008. Modeling Mantle Convection in the Spherical Annulus. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 48–54. doi:10.1016/j.pepi.2008.07.037

    Article  Google Scholar 

  • Hirschmann, M., Kohlstedt, D., 2012. Water in Earth’s Mantle. Physics Today, 65(3): 40–45. doi:10.1063/pt.3.1476

    Article  Google Scholar 

  • Hopkins, M., Harrison, T. M., Manning, C. E., 2008. Low Heat Flow Inferred from >4 Gyr Zircons Suggests Hadean Plate Boundary Interactions. Nature, 456(7221): 493–496. doi:10.1038/nature07465

    Article  Google Scholar 

  • Houser, C., 2016. Global Seismic Data Reveal Little Water in the Mantle Transition Zone. Earth and Planetary Science Letters, 448: 94–101. doi:10.13039/100000001

    Article  Google Scholar 

  • Inoue, T., Tanimoto, Y., Irifune, T., et al., 2004. Thermal Expansion of Wadsleyite, Ringwoodite, Hydrous Wadsleyite and Hydrous Ringwoodite. Physics of the Earth and Planetary Interiors, 143/144: 279–290. doi:10.1016/j.pepi.2003.07.021

    Article  Google Scholar 

  • Inoue, T., Weidner, D. J., Northrup, P. A., et al., 1998. Elastic Properties of Hydrous Ringwoodite (γ-Phase) in Mg2SiO4. Earth and Planetary Science Letters, 160(1/2): 107–113. doi:10.1016/s0012-821x(98)00077-6

    Article  Google Scholar 

  • Iwamori, H., 2004. Phase Relations of Peridotites under H2O-Saturated Conditions and Ability of Subducting Plates for Transportation of H2O. Earth and Planetary Science Letters, 227(1/2): 57–71. doi:10.1016/j.epsl.2004.08.013

    Article  Google Scholar 

  • Iwamori, H., 2007. Transportation of H2O beneath the Japan Arcs and Its Implications for Global Water Circulation. Chemical Geology, 239(3/4): 182–198. doi:10.1016/j.chemgeo.2006.08.011

    Article  Google Scholar 

  • Iwamori, H., Nakakuki, T., 2013. Fluid Processes in Subduction Zones and Water Transport to the Deep Mantle. In: Karato, S.-I., ed., Physics and Chemistry of the Deep Mantle. John Wiley, N.Y., 372–391

    Google Scholar 

  • Jacobsen, S. D., Smyth, J. R., 2006. Effect of Water on the Sound Velocities of Ringwoodite in the Transition Zone. In: Jacobsen, S. D., van der Lee, S., eds., Earth’s Deep Water Cycle. Geophys. Monogr. Ser. 168. AGU, Washington, D. C., 131–145

    Chapter  Google Scholar 

  • Karato, S.-I., 2011. Water Distribution Across the Mantle Transition Zone and Its Implications for Global Material Circulation. Earth and Planetary Science Letters, 301(3/4): 413–423. doi:10.1016/j.epsl.2010.11.038

    Article  Google Scholar 

  • Karato, S.-I., Wu, P., 1993. Rheology of the Upper Mantle: A Synthesis. Science, 260(5109): 771–778. doi:10.1126/science.260.5109.771

    Article  Google Scholar 

  • Katz, R. F., Spiegelman, M., Langmuir, C. H., 2003. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 4(9): 1073. doi:10.1029/2002gc000433

    Article  Google Scholar 

  • Kawamoto, T., 2006. Hydrous Phases and Water Transport in the Subducting Slab. Reviews in Mineralogy and Geochemistry, 62(1): 273–289. doi:10.2138/rmg.2006.62.12

    Article  Google Scholar 

  • Kelemen, P. B., Behn, M. D., 2016. Formation of Lower Continental Crust by Relamination of Buoyant Arc Lavas and Plutons. Nature Geoscience, 9(3): 197–205. doi:10.1038/ngeo2662

    Article  Google Scholar 

  • Keller, T., Tackley, P. J., 2009. Towards Self-Consistent Modeling of the Martian Dichotomy: The Influence of One-Ridge Convection on Crustal Thickness Distribution. Icarus, 202(2): 429–443. doi:10.1016/j.icarus.2009.03.029

    Article  Google Scholar 

  • Kohlstedt, D. L., Evans, B., Mackwell, S. J., 1995. Strength of the Lithosphere: Constraints Imposed by Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 100(B9): 17587–17602. doi:10.1029/95jb01460

    Article  Google Scholar 

  • Kohlstedt, D. L., Keppler, H., Rubie, D. C., 1996. Solubility of Water in the α, β and γ Phases of (Mg, Fe)2SiO4. Contributions to Mineralogy and Petrology, 123(4): 345–357. doi:10.1007/s004100050161

    Article  Google Scholar 

  • Kohn, S. C., Grant, K. J., 2006. The Partitioning of Water between Nominally Anhydrous Minerals and Silicate Melts. Reviews in Mineralogy and Geochemistry, 62(1): 231–241. doi:10.2138/rmg.2006.62.10

    Article  Google Scholar 

  • Komabayashi, T., Omori, S., Maruyama, S., 2004. Petrogenetic Grid in the System MgO-SiO2-H2O up to 30 GPa, 1 600 °C: Applications to Hydrous Peridotite Subducting into the Earth’s Deep Interior. Journal of Geophysical Research, 109(B3). doi:10.1029/2003jb002651

    Google Scholar 

  • Korenaga, J., 2011. Thermal Evolution with a Hydrating Mantle and the Initiation of Plate Tectonics in the Early Earth. Journal of Geophysical Research, 116(B12): B12403. doi:10.1029/2011jb008410

    Article  Google Scholar 

  • Korenaga, J., Karato, S.-I., 2008. A New Analysis of Experimental Data on Olivine Rheology. Journal of Geophysical Research, 113(B2): B02403. doi:10.1029/2007jb005100

    Article  Google Scholar 

  • Li, Z. X. A., Lee, C. T. A., Peslier, A. H., et al., 2008. Water Contents in Mantle Xenoliths from the Colorado Plateau and Vicinity: Implications for the Mantle Rheology and Hydration-Induced Thinning of Continental Lithosphere. Journal of Geophysical Research, 113(B9): B09210. doi:10.1029/2007jb005540

    Article  Google Scholar 

  • Mao, Z., Jacobsen, S. D., Jiang, F. M., et al., 2008. Single-Crystal Elasticity of Wadsleyites, B-Mg2SiO4, Containing 0.37–1.66 wt.% H2O. Earth and Planetary Science Letters, 268(3/4): 540–549. doi:10.1016/j.epsl.2008.01.023

    Article  Google Scholar 

  • Maruyama, S., Okamoto, K., 2007. Water Transportation from the Subducting Slab into the Mantle Transition Zone. Gondwana Research, 11(1/2): 148–165. doi:10.1016/j.gr.2006.06.001

    Article  Google Scholar 

  • Mashino, I., Murakami, M., Ohtani, E., et al., 2016. Sound Velocities of ?-AlOOH up to Core-Mantle Boundary Pressures with Implications for the Seismic Anomalies in the Deep Mantle. Journal of Geophysical Research: Solid Earth, 121(2): 595–609. doi:10.1002/2015jb012477

    Google Scholar 

  • Matsuno, T., Suetsugu, D., Baba, K., et al., 2017. Mantle Transition Zone beneath a Normal Seafloor in the Northwestern Pacific: Electrical Conductivity, Seismic Thickness, and Water Content. Earth and Planetary Science Letters, 462: 189–198. doi:10.13039/501100001691

    Article  Google Scholar 

  • McGovern, P. J., Schubert, G., 1989. Thermal Evolution of the Earth: Effects of Volatile Exchange between Atmosphere and Interior. Earth and Planetary Science Letters, 96(1/2): 27–37. doi:10.1016/0012-821x(89)90121-0

    Article  Google Scholar 

  • Mei, S. H., Kohlstedt, D. L., 2000. Influence of Water on Plastic Deformation of Olivine Aggregates: 1. Diffusion Creep Regime. Journal of Geophysical Research: Solid Earth, 105(B9): 21457–21469. doi:10.1029/2000jb900179

    Article  Google Scholar 

  • Moresi, L., Solomatov, V., 1998. Mantle Convection with a Brittle Lithosphere: Thoughts on the Global Tectonic Styles of the Earth and Venus. Geophysical Journal International, 133(3): 669–682. doi:10.1046/j.1365-246x.1998.00521.x

    Article  Google Scholar 

  • Murakami, M., Hirose, K., Yurimoto, Y., et al., 2002. Water in Earth’s Lower Mantle. Science, 295(5561): 1885–1887. doi:10.1126/science.1065998

    Article  Google Scholar 

  • Nakagawa, T., Nakakuki, T., Iwamori, H., 2015. Water Circulation and Global Mantle Dynamics: Insight from Numerical Modeling. Geochemistry, Geophysics, Geosystems, 16(5): 1449–1464. doi:10.1002/2014gc005701

    Article  Google Scholar 

  • Nakagawa, T., Spiegelman, M. W., 2017. Global-Scale Water Circulation in the Earth’s Mantle: Implications for the Mantle Water Budget in the Early Earth. Earth and Planetary Science Letters, 464: 189–199. doi:10.13039/501100001691

    Article  Google Scholar 

  • Nakagawa, T., Tackley, P. J., 2011. Effects of Low-Viscosity Post-Perovskite on Thermo-Chemical Mantle Convection in a 3-D Spherical Shell. Geophysical Research Letters, 38(4): L04309. doi:10.1029/2010gl046494

    Article  Google Scholar 

  • Nakagawa, T., Tackley, P. J., 2015. Influence of Plate Tectonic Mode on the Coupled Thermochemical Evolution of Earth’s Mantle and Core. Geochemistry, Geophysics, Geosystems, 16(10): 3400–3413. doi:10.1002/2015gc005996

    Article  Google Scholar 

  • Nakagawa, T., Tackley, P. J., Deschamps, F., et al., 2010. The Influence of MORB and Harzburgite Composition on Thermo-Chemical Mantle Convection in a 3-D Spherical Shell with Self-Consistently Calculated Mineral Physics. Earth and Planetary Science Letters, 296(3/4): 403–412. doi:10.1016/j.epsl.2010.05.026

    Article  Google Scholar 

  • Nakajima, J., Hasegawa, A., 2007. Tomographic Evidence for the Mantle Upwelling beneath Southwestern Japan and Its Implications for Arc Magmatism. Earth and Planetary Science Letters, 254(1/2): 90–105. doi:10.1016/j.epsl.2006.11.024

    Article  Google Scholar 

  • Nakajima, S., Hayashi, Y. Y., Abe, Y., 1992. A Study on the “Runaway Greenhouse Effect” with a One-Dimensional Radiative-Convective Equilibrium Model. Journal of the Atmospheric Sciences, 49(23): 2256–2266. doi:10.1175/1520-0469(1992)049<2256:asotge>2.0.co;2

    Article  Google Scholar 

  • Nakajima, Y., Imada, S., Hirose, K., et al., 2015. Carbon-Depleted Outer Core Revealed by Sound Velocity Measurements of Liquid Iron-Carbon Alloy. Nature Communications, 6: 8942. doi:10.1038/ncomms9942

    Article  Google Scholar 

  • Nakao, A., Iwamori, H., Nakakuki, T., 2016. Effects of Water Transportation on Subduction Dynamics: Roles of Viscosity and Density Reduction. Earth and Planetary Science Letters, 454: 178–191. doi:10.13039/501100001691

    Article  Google Scholar 

  • Nisbet, E. G., Sleep, N. H., 2001. The Habitat and Nature of Early Life. Nature, 409(6823): 1083–1091. doi:10.1038/35059210

    Article  Google Scholar 

  • Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224–227. doi:10.1038/ngeo2074

    Article  Google Scholar 

  • O’Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3/4): 552–562. doi:10.1016/j.epsl.2007.04.056

    Article  Google Scholar 

  • Ohira, I., Ohtani, E., Sakai, T., et al., 2014. Stability of a Hydrous Δ-Phase, AlOOH-MgSiO2(OH)2, and a Mechanism for Water Transport into the Base of Lower Mantle. Earth and Planetary Science Letters, 401: 12–17. doi:10.13039/501100001691

    Article  Google Scholar 

  • Ohtani, E., 2005. Water in the Mantle. Elements, 1(1): 25–30. doi:10.2113/gselements.1.1.25

    Article  Google Scholar 

  • Ohtani, E., Amaike, Y., Kamada, S., et al., 2014. Stability of Hydrous Phase H MgSiO4H2 under Lower Mantle Conditions. Geophysical Research Letters, 41(23): 8283–8287. doi:10.13039/501100003443

    Article  Google Scholar 

  • Ohtani, E., Maeda, M., 2001. Density of Basaltic Melt at High Pressure and Stability of the Melt at the Base of the Lower Mantle. Earth and Planetary Science Letters, 193(1/2): 69–75. doi:10.1016/s0012-821x(01)00505-2

    Article  Google Scholar 

  • Panero, W. R., Pigott, J. S., Reaman, D. M., et al., 2015. Dry (Mg, Fe)SiO3 Perovskite in the Earth’s Lower Mantle. Journal of Geophysical Research: Solid Earth, 120(2): 894–908. doi:10.1002/2014jb011397

    Google Scholar 

  • Pearson, D. G., Brenker, F. E., Nestola, F., et al., 2014. Hydrous Mantle Transition Zone Indicated by Ringwoodite Included within Diamond. Nature, 507(7491): 221–224. doi:10.1038/nature13080

    Article  Google Scholar 

  • Poirier, J. P., 1994. Light Elements in the Earth’s Outer Core: A Critical Review. Physics of the Earth and Planetary Interiors, 85(3/4): 319–337. doi:10.1016/0031-9201(94)90120-1

    Article  Google Scholar 

  • Rey, P. F., Coltice, N., Flament, N., 2014. Spreading Continents Kick-Started Plate Tectonics. Nature, 513(7518): 405–408. doi:10.1038/nature13728

    Article  Google Scholar 

  • Richard, G., Monnereau, M., Ingrin, J., 2002. Is the Transition Zone an Empty Water Reservoir? Inferences from Numerical Model of Mantle Dynamics. Earth and Planetary Science Letters, 205(1/2): 37–51. doi:10.1016/s0012-821x(02)01012-9

    Article  Google Scholar 

  • Rolf, T., Coltice, N., Tackley, P. J., 2012. Linking Continental Drift, Plate Tectonics and the Thermal State of the Earth’s Mantle. Earth and Planetary Science Letters, 351/352: 134–146. doi:10.1016/j.epsl.2012.07.011

    Article  Google Scholar 

  • Rüpke, L., Morgan, J. P., Dixon, J. E., 2006. Implciations of Subduction Rehydration for Earth’s Deep Water Cycle. In: Jacobsen, S. D., van der Lee, S., eds., Earth’s Deep Water Cycle. Geophys. Monogr. Ser. 168. AGU, Washington, D. C., 263–276. doi:10.102/168GM20

    Chapter  Google Scholar 

  • Rüpke, L., Morgan, J. P., Hort, M., et al., 2004. Serpentine and the Subduction Zone Water Cycle. Earth and Planetary Science Letters, 223(1/2): 17–34. doi:10.1016/j.epsl.2004.04.018

    Article  Google Scholar 

  • Sandu, C., Lenardic, A., McGovern, P., 2011. The Effects of Deep Water Cycling on Planetary Thermal Evolution. Journal of Geophysical Research, 116(B12): B12404. doi:10.1029/2011jb008405

    Article  Google Scholar 

  • Schmandt, B., Jacobsen, S. D., Becker, T. W., et al., 2014. Dehydration Melting at the Top of the Lower Mantle. Science, 344(6189): 1265–1268. doi:10.1126/science.1253358

    Article  Google Scholar 

  • Tackley, P. J., 2000a. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations—Part 1: Pseudo-Plastic Yielding. Geochemistry, Geophysics, Geosystems, 1(8): 1525. doi:10.1029/2000gc000043

    Google Scholar 

  • Tackley, P. J., 2000b. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations—Part 2: Strain Weakening and Asthenosphere. Geochemistry, Geophysics, Geosystems, 1(8): 1026. doi:10.1029/2000gc000043

    Google Scholar 

  • Tackley, P. J., 2008. Modelling Compressible Mantle Convection with Large Viscosity Contrasts in a Three-Dimensional Spherical Shell Using the Yin-Yang Grid. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 7–18. doi:10.1016/j.pepi.2008.08.005

    Article  Google Scholar 

  • Tackley, P. J., 1996. Effects of Strongly Variable Viscosity on Three- Dimensional Compressible Convection in Planetary Mantles. Journal of Geophysical Research: Solid Earth, 101(B2): 3311–3332. doi:10.1029/95jb03211

    Article  Google Scholar 

  • Tajika, E., Matsui, T., 1992. Evolution of Terrestrial Proto-CO2 Atmosphere Coupled with Thermal History of the Earth. Earth and Planetary Science Letters, 113(1/2): 251–266. doi:10.1016/0012-821x(92)90223-i

    Article  Google Scholar 

  • Timm, O., Timmermann, A., Abe-Ouchi, A., et al., 2008. On the Definition of Seasons in Paleoclimate Simulations with Orbital Forcing. Paleoceanography, 23(2): PA2221. doi:10.1029/2007pa001461

    Article  Google Scholar 

  • Townsend, J. P., Tsuchiya, J., Bina, C. R., et al., 2016. Water Partitioning between Bridgmanite and Postperovskite in the Lowermost Mantle. Earth and Planetary Science Letters, 454: 20–27. doi:10.13039/100007059

    Article  Google Scholar 

  • Trampert, R., Hansen, U., 1998. Mantle Convection Simulations with Rheologies that Generate Plate-Like Behavior. Nature, 395: 686–689. doi:10.1038/27185

    Article  Google Scholar 

  • Trenberth, K. E., Fasullo, J. T., Kiehl, J., 2009. Earth’s Global Energy Budget. Bulletin of the American Meteorological Society, 90(3): 311–323. doi:10.1175/2008bams2634.1

    Article  Google Scholar 

  • Umemoto, K., Hirose, K., 2015. Liquid Iron-Hydrogen Alloys at Outer Core Conditions by First-Principles Calculations. Geophysical Research Letters, 42(18): 7513–7520. doi:10.1002/2015gl065899

    Article  Google Scholar 

  • van Heck, H. J., Tackley, P. J., 2008. Planforms of Self-Consistently Generated Plates in 3D Spherical Geometry. Geophysical Research Letters, 35(19): L19312. doi:10.1029/2008gl035190

    Article  Google Scholar 

  • van Hunen, J., Moyen, J. F., 2012. Archean Subduction: Fact or Fiction?. Annual Review of Earth and Planetary Sciences, 40(1): 195–219. doi:10.1146/annurev-earth-042711-105255

    Article  Google Scholar 

  • van Keken, P. E., Hacker, B. R., Syracuse, E. M., et al., 2011. Subduction Factory: 4. Depth-Dependent Flux of H2O from Subducting Slabs Worldwide. Journal of Geophysical Research, 116(B1): B01401. doi:10.1029/2010jb007922

    Google Scholar 

  • Wang, J. Y., Sinogeikin, S. V., Inoue, T., et al., 2006. Elastic Properties of Hydrous Ringwoodite at High-Pressure Conditions. Geophysical Research Letters, 33(14): L14308. doi:10.1029/2006gl026441

    Article  Google Scholar 

  • Wilson, C. R., Spiegelman, M., van Keken, P. E., et al., 2014. Fluid Flow in Subduction Zones: The Role of Solid Rheology and Compaction Pressure. Earth and Planetary Science Letters, 401: 261–274. doi:10.13039/100000001

    Article  Google Scholar 

  • Xie, S. X., Tackley, P. J., 2004. Evolution of U-Pb and Sm-Nd Systems in Numerical Models of Mantle Convection and Plate Tectonics. Journal of Geophysical Research: Solid Earth, 109(B11): B11204. doi:10.1029/2004jb003176

    Article  Google Scholar 

  • Yamazaki, D., Karato, S.-I., 2001. Some Mineral Physics Constraints on the Rheology and Geothermal Structure of Earth’s Lower Mantle. American Mineralogist, 86(4): 385–391. doi:10.2138/am-2001-0401

    Article  Google Scholar 

  • Ye, Y., Brown, D. A., Smyth, J. R., et al., 2012. Compressibility and Thermal Expansion of Hydrous Ringwoodite with 2.5(3) wt% H2O. American Mineralogist, 97(4): 573–582. doi:10.2138/am.2012.4010

    Article  Google Scholar 

  • Zahnle, K., Arndt, N., Cockell, C., et al., 2007. Emergence of a Habitable Planet. Space Science Reviews, 129(1/2/3): 35–78. doi:10.1007/s11214-007-9225-z

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Hikaru Iwamori, Tomoeki Nakakuki, Atsushi Nakao and Marc Spiegelman for constructive discussions; Paul Tackley for providing his numerical mantle convection code (StagYY); and Prof. Timothy M. Kusky for inviting this paper. The author also thanks Masanori Kameyama and two anonymous reviewers for improving the original manuscript greatly. Financial support was obtained from JSPS KAKENHI (Nos. JP16K05547, JSPS/MEXT), and the Grant-In- Aid for Scientific Research on Innovative Area (Interaction and Coevolution of the Core and Mantle—Towards Integrated Deep Earth Science, No. JP15H05834), and MEXT as “Exploratory Challenge on Post-K Computer” (Frontiers of Basics Science: Challenging the Limits—Subproject C: Structure and Properties of Materials in Deep Earth and Planets allocated at Computational Astrophysics Laboratory, RIKEN). Numerical computations were performed at SCI ICE-X/UV in the JAMSTEC, YETI HPC cluster in Columbia University in the City of New York and at the K-Computer in AICS, RIKEN. The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0755-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, T. On the numerical modeling of the deep mantle water cycle in global-scale mantle dynamics: The effects of the water solubility limit of lower mantle minerals. J. Earth Sci. 28, 563–577 (2017). https://doi.org/10.1007/s12583-017-0755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0755-3

Key words

Navigation