Skip to main content
Log in

Upper ocean response to tropical cyclone wind forcing: A case study of typhoon Rammasun (2008)

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The characteristics of the upper ocean response to tropical cyclone wind (TCW) forcing in the northwestern Pacific were investigated using satellite and Argo data, as well as an ocean general circulation model. In particular, a case study was carried out on typhoon Rammasun, which passed through our study area during May 6–13, 2008. It is found that the local response right under the TCW forcing is characterized by a quick deepening of the surface mixed layer, a strong latent heat loss to the atmosphere, and an intense upwelling near the center of typhoon, leading to a cooling of the oceanic surface layer that persists as a cold wake along the typhoon track. More interestingly, the upper ocean response exhibits a four-layer thermal structure, including a cooling layer near the surface and a warming layer right below, accompanied by another pair of cooling/warming layers in the thermocline. The formation of the surface cooling/warming layers can be readily explained by the strong vertical mixing induced by TCW forcing, while the thermal response in the thermocline is probably a result of the cyclone-driven upwelling and the associated advective processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas R, Hoffman R N, Ardizzone J, Leidner S M, Jusem J C, Smith D K, Gombos D. 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Amer Meteorol Soc, 92: 157–174

    Article  Google Scholar 

  • Chen D, Rothstein L M, Busalacchi A J. 1994. A hybrid vertical mixing scheme and its application to tropical ocean models. J Phys Oceanogr, 24: 2156–2179

    Article  Google Scholar 

  • Chen G, Tam C Y. 2010. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys Res Lett, 37: L01803, doi: 10.1029/2009GL041708

    Google Scholar 

  • Chu J H, Sampson C R, Levine A S, et al. 2002. The Joint Typhoon Warning Center tropical cyclone best tracks, 1945-2000. Naval Research Laboratory Technical Report. NRL/MR/7540-02-16, 112

    Google Scholar 

  • Emanuel K A. 1987. The dependence of hurricane intensity on climate. Nature, 326: 483–485

    Article  Google Scholar 

  • Emanuel K A. 2001. Contribution of tropical cyclones to meridional heat transport by the oceans. J Geophys Res, 106: 14771–14781

    Article  Google Scholar 

  • Fedorov A V, Brierley C M, Emanuel K A. 2010. Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463: 1066–1070

    Article  Google Scholar 

  • Gent P R, Cane M A. 1989. A reduced gravity, primitive equation model of the upper equatorial ocean. J Comp Phys, 81: 444–480

    Article  Google Scholar 

  • Ginis I. 2002. Tropical cyclone-ocean interactions. In: Perrie W, ed. Atmosphere–Ocean Interactions. Boston: WIT Press. 83–114

    Google Scholar 

  • Hackert E C, Busalacchi A J, Murtugudde R. 2001. A wind comparison study using an ocean general circulation model for the 1997–1998 El Niño. J Geophys Res, 106: 2345–2362

    Article  Google Scholar 

  • Henderson-sellers A, Zhang H, Berz G, Emanuel K, Gray W, Landsea C, Holland G, Lighthill J, Shieh S L, Webster P, and Mcguffie K. 1998. Tropical cyclones and global climate change: A post-IPCC assessment. Bull Amer Meteorol Soc, 79: 19–38

    Article  Google Scholar 

  • Hu A, Meehl G A. 2009. Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport. Geophys Res Lett, 36: L03702, doi: 10.1029/2008GL036680

    Article  Google Scholar 

  • Huang P, Sanford T B, Imberger J. 2009. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J Geophys Res, 114: C12023, doi: 10.1029/2009JC005603

    Article  Google Scholar 

  • Jacob S D, Shay L K, Mariano A J, Black P G. 2000. The 3D oceanic mixed layer response to hurricane Gilbert. J Phys Oceanogr, 30: 1407–1429

    Article  Google Scholar 

  • Jansen M, Ferrari R. 2009. Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys Res Lett, 36: L06604, doi: 10.1029/2008GL036796

    Article  Google Scholar 

  • Kim H M, Webster P J, Curry J A. 2011. Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J Clim, 24: 1839–1849

    Article  Google Scholar 

  • Korty R L, Emanuel K A, Scott J R. 2008. Tropical cyclone-induced upper- ocean mixing and climate: Application to equable climates. J Clim, 21: 638–654

    Article  Google Scholar 

  • Levitus S, Antonov J, Boyer T. 2005. Warming of the world ocean, 1955-2003. Geophys Res Lett, 32: L02604, doi: 10.1029/ 2004GL021592

    Google Scholar 

  • Lin I I, Liu W T, Wu C C, Chiang J C H, Sui C H. 2003. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys Res Lett, 30: 1131. doi: 10.1029/2002GL015674

    Article  Google Scholar 

  • Murtugudde R, Beauchamp J, McClain C R, Lewis M, Busalacchi A J. 2002. Effects of penetrative radiation on the upper tropical ocean circulation. J Clim, 15: 470–486

    Article  Google Scholar 

  • Murtugudde R, Busalacchi A J. 1998. Salinity effects in a tropical ocean model. J Geophys Res, 103: 3283–3300

    Article  Google Scholar 

  • Murtugudde R, Seager R, Busalacchi A. 1996. Simulation of tropical oceans with an ocean GCM coupled to an atmospheric mixed layer model. J Clim, 9: 1795–1815

    Article  Google Scholar 

  • O’Neill L W, Chelton D B, Esbensen S K. 2010. The effects of SSTinduced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J Clim, 23: 255–281

    Article  Google Scholar 

  • Pasquero C, Emanuel K. 2008. Tropical cyclones and transient upper ocean warming. J Clim, 21: 149–162

    Article  Google Scholar 

  • Price J F. 1981. Upper ocean response to a hurricane. J Phys Oceanogr, 11: 153–175

    Article  Google Scholar 

  • Price J F, Morzel J, Niiler P P. 2008. Warming of SST in the cool wake of a moving hurricane. J Geophys Res, 113: C07010, doi: 10.1029/ 2007JC004393

    Google Scholar 

  • Seager R, Blumenthal M B, Kushnir Y. 1995. An advective atmospheric mixed layer model for ocean modeling purposes: Global simulation of surface heat fluxes. J Clim, 8: 1951–1964

    Article  Google Scholar 

  • Sriver R L, Goes M, Mann M E, Keller K. 2010. Climate response to tropical cyclone-induced ocean mixing in an Earth system model of intermediate complexity. J Geophys Res, 115: C10042, doi: 10.1029/ 2010JC006106

    Article  Google Scholar 

  • Sriver R L, Huber M. 2007. Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447: 557–580

    Article  Google Scholar 

  • Sriver R L, Huber M. 2010. Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation. Geophys Res Lett, 37: L08704, doi: 10.1029/ 2010GL042836

    Article  Google Scholar 

  • Vincent E M, Lengaigne M, Madec G, Vialard J, Samson G, Jourdain N C, Menkes C E, Jullien S. 2012. Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J Geophys Res, 117: C02020, doi: 10.1029/2011JC007396

    Google Scholar 

  • Webster P J, Holland G T, Curry J A, Chang H R. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309: 1844–1846

    Article  Google Scholar 

  • Wu Q, Chen D. 2012. Typhoon-induced variability of the oceanic surface mixed layer observed by Argo floats in the western north Pacific ocean. Atmos Ocean, 50 (supl): 4–14

    Google Scholar 

  • Xie P, Arkin P A. 1995. An intercomparison of gauge observations and satellite estimates of monthly precipitation. J Appl Meteorol, 34: 1143–1160

    Article  Google Scholar 

  • Zedler S E. 2009. Simulations of the ocean response to a hurricane: Nonlinear processes. J Phys Oceanogr, 39: 2618–2634

    Article  Google Scholar 

  • Zhang R H, Pei Y, Chen D. 2013. Remote effects of tropical cyclone wind forcing over the western Pacific on the eastern equatorial ocean. Adv Atmos Sci, 30: 1507–1525

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaKe Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Y., Zhang, R. & Chen, D. Upper ocean response to tropical cyclone wind forcing: A case study of typhoon Rammasun (2008). Sci. China Earth Sci. 58, 1623–1632 (2015). https://doi.org/10.1007/s11430-015-5127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5127-1

Keywords

Navigation