Skip to main content
Log in

Change of tropical cyclone heat potential in response to global warming

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Model Intercomparison Project, Phase 5). As the upper ocean warms up, the TCHP of the global ocean is projected to increase by 140.6% in the 21st century under the RCP4.5 (+4.5 W m-2 Representative Concentration Pathway) scenario. The increase is particularly significant in the western Pacific, northwestern Indian and western tropical Atlantic oceans. The increase of TCHP results from the ocean temperature warming above the depth of the 26°C isotherm (D26), the deepening of D26, and the horizontal area expansion of SST above 26°C. Their contributions are 69.4%, 22.5% and 8.1%, respectively. Further, a suite of numerical experiments with an Ocean General Circulation Model (OGCM) is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming. Results show that sea surface warming is the dominant forcing for the TCHP change, while wind stress and sea surface salinity change are secondary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Collins, M., and Coauthors, 2013: Long-term climate change: projections, commitments and irreversibility,1029-1136. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 1090–1093.

    Article  Google Scholar 

  • Emanuel, K. A., 2001: The contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106(D14), 14771–14781.

    Article  Google Scholar 

  • Goni, G., and Coauthors, 2009: Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22, 190–197.

    Article  Google Scholar 

  • Gray, W. M., 1979: Hurricanes: Their formation, structure, and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Eds., James Glaisher House, 155–218.

    Google Scholar 

  • Huang, P., I.-I. Lin, C. Chou, and R. H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nature Communications, 6, 7188, doi: 10.1038/ncomms8188.

    Article  Google Scholar 

  • Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. Journal Oceanography, 65, 287–299.

    Article  Google Scholar 

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 6591–6617.

    Article  Google Scholar 

  • Large, W. G., and S. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341–364, doi: 10.1007/s00382-008-0441-3.

    Article  Google Scholar 

  • Leipper, D. F., and L. D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218–224.

    Article  Google Scholar 

  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m) 1955–2010. Geophys. Res. Lett., 39, L10603.

    Article  Google Scholar 

  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upperocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 3288–3306, doi: 10.1175/2008MWR2277.1.

    Article  Google Scholar 

  • Locarnini, R. A., and Coauthors, 2013: World Ocean Atlas 2013, Vol. 1: Temperature. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 73, 40 pp.

  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619.

    Google Scholar 

  • Mei, W., F. Primeau, J. C. McWillams, and C. Pasquero, 2013: Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15207–15210.

    Article  Google Scholar 

  • Mei, W., S. P. Xie, F. Primeau, J. C. McWilliams, and C. Pasquero, 2015: Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Science Advances, 1, e1500014.

    Article  Google Scholar 

  • Palmer, M. D., K. Haines, S. F. B. Tett, and T. J. Ansell, 2007: Isolating the signal of ocean global warming. Geophys. Res. Lett., 34, L23610.

    Article  Google Scholar 

  • Pun, I.-F., I.-I. Lin, and M.-H. Lo, 2013: Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophys. Res. Lett., 40, 4680–4884, doi: 10.1002/grl.50548.

    Article  Google Scholar 

  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on hurricane Opal. Mon.Wea. Rev., 128, 1366–1383.

    Article  Google Scholar 

  • Sobel, A. H., and S. J. Camargo, 2011: Projected future seasonal changes in tropical summer climate. J. Climate, 24, 473–487, doi: 10.1175/2010JCLI3748.1.

    Article  Google Scholar 

  • Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577–580.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Wada, A., and N. Usui, 2007: Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific. Journal of Oceanography, 63, 427–447, doi: 10.1007/s10872-007-0039-0.

    Article  Google Scholar 

  • Wada, A., and J. C. L. Chan, 2008: Relationship between typhoon activity and upper ocean heat content. Geophys. Res. Lett., 35, L17603, doi: 10.1029/2008GL035129.

    Article  Google Scholar 

  • Wada, A., N. Usui, and K. Sato, 2012: Relationship of maximum tropical cyclone intensity to sea surface temperature and tropical cyclone heat potential in the North Pacific Ocean. J. Geophys. Res., 117, D11118, doi: 10.1029/2012JD017583.

    Article  Google Scholar 

  • Wang, C. Z., L. P. Zhang, S.-K. Lee, L. X. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nature Climate Change, 4, 201–205, doi: 10.1038/nclimate2118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Chen, C. & Wang, G. Change of tropical cyclone heat potential in response to global warming. Adv. Atmos. Sci. 33, 504–510 (2016). https://doi.org/10.1007/s00376-015-5112-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5112-9

Keywords

Navigation