Skip to main content
Log in

Using a Lagrangian model to estimate source regions of particles in sediment traps

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A Lagrangian model is used to evaluate source regions of particles collected in the sediment traps at the DYFAMED (Dynamique des Flux Atmosphériques en Méditerranée) station by tracking particles backwards from March 1 to August 31, 2001. The analysis suggests that source regions depend on the flow fields, the settling speed of the particles, and the deployment depths of the traps. Monthly variation is observed in the distribution patterns of source regions, which is caused by the currents. The source regions are located around the traps and up to hundreds of kilometers away. As the settling speed increases with the particle diameters, the distance to the source regions decreases. The vertical flux can be approximately estimated in 1D for the particles with diameters larger than 500 μm. Furthermore, traps moored at various depths at the DYFAMED can collect particles that originated from different regions in the Ligurian Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alldredge A L, Gotschalk C. 1988. In situ settling behavior of marine snow. Limnol Oceanogr, 339–351

    Google Scholar 

  • Auclair F, Marsaleix P, Estournel C. 2001. The penetration of the Northern Current over the Gulf of Lions (Mediterranean) as a downscaling problem. Oceanol Acta, 24: 529–544

    Article  Google Scholar 

  • Bienfang P K. 1980. Herbivore diet affects fecal pellet settling. Can J Fish Aquat Sci, 37: 1352–1357

    Article  Google Scholar 

  • Bouffard J, Vignudelli S, Herrmann M, et al. 2008. Comparison of ocean dynamics with a regional circulation model and improved altimetry in the north-western Mediterranean. Terr Atmos Ocean Sci, 19: 117–133

    Article  Google Scholar 

  • Buesseler K O, Antia A N, Chen M, et al. 2007. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res, 65: 345–416

    Article  Google Scholar 

  • Buesseler K O, Trull T W, Steinberg D K, et al. 2008. VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the north Pacific. Deep-Sea Res Part II-Top Stud Oceanogr, 55: 1522–1539

    Article  Google Scholar 

  • Denny M. 1993. Air and Water: The Biology and Physics of Life’s Media. Princeton: Princeton University Press. 341

    Google Scholar 

  • Deuser W G, Muller-Karger F E, Evans R H, et al. 1990. Surface-ocean color and deep-ocean carbon flux: how close a connection? Deep-Sea Res Part I-Oceanogr Res Pap, 37: 1331–1343

    Article  Google Scholar 

  • Estournel C, Auclair F, Lux M, et al. 2007. “Scale oriented” embedded modeling of the North-Western Mediterranean in the frame of MFSTEP. Ocean Sci Discuss, 4: 145–187

    Article  Google Scholar 

  • Gaspar P, Grégoris Y, Lefevre J. 1990. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. J Geophys Res, 95: 16179–16193

    Article  Google Scholar 

  • Gatti J, Petrenko A, Devenon J, et al. 2006. The Rhone river dilution zone present in the northeastern shelf of the Gulf of Lion in December 2003. Cont Shelf Res, 26: 1794–1805

    Article  Google Scholar 

  • Guidi-Guilvard L D. 2002. DYFAMED-BENTHOS, a long time-series benthic survey at 2347-m depth in the northwestern Mediterranean: general introduction. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 2183–2193

    Article  Google Scholar 

  • Hill P S, Syvitski J P, Cowan E A, et al. 1998. In situ observations of floc settling velocities in Glacier Bay, Alaska. Mar Geol, 145: 85–94

    Article  Google Scholar 

  • Honjo S, Francois R, Manganini S, et al. 2000. Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170 W. Deep-Sea Res Part II-Top Stud Oceanogr, 47: 3521–3548

    Article  Google Scholar 

  • Hu Z Y, Doglioli A M, Petrenko A A, et al. 2009. Numerical simulations of eddies in the Gulf of Lion. Ocean Model, 28: 203–208

    Article  Google Scholar 

  • Hu Z Y, Petrenko A A, Doglioli A M, et al. 2011. Study of a mesoscale anticyclonic eddy in the western part of the Gulf of Lion. J Marine Syst, 88: 3–11

    Article  Google Scholar 

  • Keslin J, Sokolov M, Wakeham W. 1978. Viscosity of liquid water in the range −8°C to 15°°C. J Phys Chem Ref Data, 7: 941–948

    Article  Google Scholar 

  • Marsaleix P, Auclair F, Floor J W, et al. 2008. Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean Model, 20: 61–89

    Article  Google Scholar 

  • Marty J, Chiavérini J. 2002. Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 2017–2030

    Article  Google Scholar 

  • Neuer S, Ratmeyer V, Davenport R, et al. 1997. Deep water particle flux in the Canary Island region: Seasonal trends in relation to long-term satellite derived pigment data and lateral sources. Deep-Sea Res Part I-Oceanogr Res Pap, 44: 1451–1466

    Article  Google Scholar 

  • Petrenko A, Leredde Y, Marsaleix P. 2005. Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean Sea: in situ and modeling data. Cont Shelf Res, 25: 7–27

    Article  Google Scholar 

  • Qiu Z F, Doglioli A M, Hu Z Y, et al. 2010. The influence of hydrodynamic processes on zooplankton transport and distributions in the north western Mediterranean: Estimates from a Lagrangian model. Ecol Model, 221: 2816–2827

    Article  Google Scholar 

  • Qiu Z, Doglioli A M, He Y, et al. 2011. Lagrangian model of zooplankton dispersion: Numerical schemes comparisons and parameter sensitivity tests. Chin J Oceanol Limnol, 29: 438–445

    Article  Google Scholar 

  • Shanks A L, Trent J D. 1980. Marine snow: sinking rates and potential role in vertical flux. Deep-Sea Res Part I-Oceanogr Res Pap, 27: 137–143

    Article  Google Scholar 

  • Siegel D A, Deuser W G. 1997. Trajectories of sinking particles in the Sargasso Sea: Modeling of statistical funnels above deep-ocean sediment traps. Deep-Sea Res Part I-Oceanogr Res Pap, 44: 1519–1541

    Article  Google Scholar 

  • Siegel D A, Fields E, Buesseler K O. 2008. A bottom-up view of the biological pump: modeling source funnels above ocean sediment traps. Deep-Sea Res Part I-Oceanogr Res Pap, 55: 108–127

    Article  Google Scholar 

  • Siegel D A, Granata T C, Michaels A F, et al. 1990. Mesoscale eddy diffusion, particle sinking, and the interpretation of sediment trap data. J Geophys Res, 95: 5305–5311

    Article  Google Scholar 

  • Stemmann L, Gorsky G, Marty J, et al. 2002. Four-year study of large-particle vertical distribution (0–1000 m) in the NW Mediterranean in relation to hydrology, phytoplankton, and vertical flux. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 2143–2162

    Article  Google Scholar 

  • Syvitski J P, Asprey K W, Leblanc K. 1995. In-situ characteristics of particles settling within a deep-water estuary. Deep-Sea Res Part II-Top Stud Oceanogr, 42: 223–256

    Article  Google Scholar 

  • Trull T W, Bray S G, Buesseler K O, et al. 2008. In situ measurement of mesopelagic particle sinking rates and the control of carbon transfer to the ocean interior during the Vertical Flux in the Global Ocean (VERTIGO) voyages in the north Pacific. Deep-Sea Res Part II-Top Stud Oceanogr, 55: 1684–1695

    Article  Google Scholar 

  • Waniek J, Koeve W, Prien R D. 2000. Trajectories of sinking particles and the catchment areas above sediment traps in the northeast Atlantic. J Mar Res, 58: 983–1006

    Article  Google Scholar 

  • Xue J H. 2008. The Chemical Composition of Sinking Particles and their Vertical Dynamics in the Open Ocean. Doctoral Dissertation. Stony Brook: Stony Brook University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongFeng Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Doglioli, A.M. & Carlotti, F. Using a Lagrangian model to estimate source regions of particles in sediment traps. Sci. China Earth Sci. 57, 2447–2456 (2014). https://doi.org/10.1007/s11430-014-4880-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4880-x

Keywords

Navigation