Skip to main content
Log in

Evolution of kaolinite subgroup minerals and mixed-layer illite/smectite in the Paleogene Damintun Depression in Liaohe Basin of China and its implication for paleotemperature

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The oil-rich Damintun Depression is located in the Liaohe Basin, Northeast China, and was formed during the Paleogene. The major oil-producing strata in the depression are mudstone and shale. To explore the burial diagenetic history of the basin and the formation thresholds of hydrocarbons, the characters of the kaolinite subgroup minerals and mixed-layer illite/smectite in the mudstone and the shale are studied by using X-ray diffraction, electron probe, scanning electron microscope, and Fourier infrared spectrum. The kaolinite subgroup consists of kaolinite and halloysite. The kaolinite is flake-like or vermiform-like. The halloysite is in long tubular shape and its length is related to its iron content. A longer tube has lower iron content. The crystallinity of kaolinite is 0.40 °2θ, and its degree of order increases from 0.03 to 1.17 with the burial depth. Kaolinite is in disorder when the buried depth is less than or equal to 2479 m, and it is partially ordered when the buried depth is greater than 2479 m. Kaolinite is supposed to turn into dickite when the depth is greater than 2550 m, but low penetrability and low porosity of the shale and mudstone prevent such a change. The mixed-layer illite/smectite changes from disorder to order continually as the buried depth increases. Its disorder (R 0I/S), as defined by illite layer content (I%), is smaller than 50% at depths less than 2550.25 m. Based on Hoffman & Hower’s model, the paleo-geothermal gradients of 3.37–3.76°C/100 m (3.57°C /100 m on average) can be derived in the Paleocene Damintun Depression, which is significantly higher than the present geothermal gradient (2.9°C/100 m). The threshold depth of the oil formation in the depression is about 2550 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman J, Hower J. Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust-faulted disturbed belt of Montana, U.S.A.. In: Schoole, P A, et al. eds. Aspects of Diagenesis. SEPM Spec, 1979, 26: 55–79

  2. Cathelineau M, Nieva D A. Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner, 1988, 23: 471–485

    Article  Google Scholar 

  3. Harvey C C, Browne P R L. Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand. Clays Clay Miner, 1991, 39: 614–621

    Article  Google Scholar 

  4. Kirsten L P, Mcdowell S D. Illite/smectite geothermometry of the Proterozoic Oronto Group, midcontinent rift system. Clays Clay Miner, 1993, 41: 134–147

    Article  Google Scholar 

  5. Pollastro R M. Considerations and applications of the illite/smectite geothermometer in hydrocarbon bearing rocks of Micene to Mississippian age. Clays Clay Miner, 1993, 41: 119–133

    Article  Google Scholar 

  6. Zhao M, Chen X M, Ji J F, et al. Evolution of chlorite composition in the Paleogene prototype basin of Jiyang Depression, Shandong, China, and its implication for paleogeothermal gradient. Sci China Ser D-Earth Sci, 2007, 50: 1645–1654

    Article  Google Scholar 

  7. Zhao M, Chen X M, Ji J F, et al. Diagenetic and paleogeothermal evolution of the clay minerals in the Paleogene Changwei prototype basin of Shandong Province, China (in Chinese). Acta Petrol Sin, 2006, 22: 2195–2204

    Google Scholar 

  8. Claire-Isabelle F, Juraj M, Daniel B, et al. New thermochemical evidence on the stability of dickite vs. kaolinite. Amer Miner, 2003, 88: 837–845

    Google Scholar 

  9. Joussein E, Petit S, Churchman J, et al. Halloysite clay minerals —A review. Clay Miner, 2005, 40: 383–426

    Article  Google Scholar 

  10. Murray H H. Kaolin minerals: their genesis and occurrences. In: Bailey S W, ed. Hydrous Phyllosilicates (Exclusive of Micas). Washington, D.C.: Reviews in Mineralogy, 19. Miner Soc Amer, 1988. 67–89

    Google Scholar 

  11. Ruiz Cruz M D, Moreno Real L. Diagenetic kaolinite/dickite (Betic Cordilleras, Spain). Clays Clay Miner, 1993, 41: 570–579

    Article  Google Scholar 

  12. Beaufort D, Cassagnabère A, Petit S, et al. Kaolinite-to-dickite reaction in sandstone reservoirs. Clay Miner, 1998, 33: 297–316

    Article  Google Scholar 

  13. Anovitz L M, Perkins D, Essene E J. Metastability in near-surface rocks in the system Al2O3-SiO2-H2O. Clays Clay Miner, 1991, 39: 225–233

    Article  Google Scholar 

  14. de Ligny D, Navrotsky A. Energetics of kaolin polymorphs. Amer Miner, 1999, 84: 506–516

    Google Scholar 

  15. Fialips C I, Navrotsky A, Petit S. Crystal properties and energetics of synthetic kaolinite. Amer Miner, 2001, 86: 304–311

    Google Scholar 

  16. Ruiz Cruz M D, Reyes E. Kaolinite and dickite formation during shale diagenesis: Isotopic data. Appl Geochem, 1998, 13: 95–104

    Article  Google Scholar 

  17. Jiang J Q, Li J, Shi J N, et al. Geothermal characteristics of Damingtun sag and its significance for petroleum accumulation (in Chinese). Acta Sediment Sin, 2004, 22: 541–546

    Google Scholar 

  18. Chen Z Y, Chen Y C, Guo Y M, et al. Some Recognitions and Practices of Precised Explorations in Damintun Sag (in Chinese). Beijng: Petroleum Industry Press, 2007. 3–19

    Google Scholar 

  19. Shi Y R, Xie Q B, Pen S M, et al. Research in sequence stratigraphy of Sha-4 Formation in Damintun Sag (in Chinese). J Xi’an Shiyou Univ (Nat Sci Ed), 2007, 22: 14–18

    Google Scholar 

  20. Shi J N, Jiang J Q, Lu C G, et al. The characteristics and origin of overpressure in damingtun depression of Liaohe Basin and petroleum exploration significance (in Chinese). Mar Petrol, 2004, 24: 19–24

    Google Scholar 

  21. Xie W Y, Jiang J Q, Shi J N. Evolution of geopressure field in Damintun Sag and its significance on hydrocarbon accumulation (in Chinese). Acta Petrol Sin, 2004, 25: 48–52

    Google Scholar 

  22. Warr L N, Rice A H N. Inter laboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J Metamorp Geol, 1994, 2: 141–152

    Article  Google Scholar 

  23. Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Amer Bull, 1965, 6: 803–831

    Article  Google Scholar 

  24. Bauluz B, Mayayo M J, Yuste A, et al. Genesis of kaolinite from Albian sedimentary deposits of the Iberian Range (NE Spain): Analysis by XRD, SEM and TEM. Clay Miner, 2008, 43: 459–475

    Article  Google Scholar 

  25. Cases J M, Liètard O, Yvon J, et al. Etude des propiétés cristallochimiques, morphologiques, superficielles de kaolinites désordonneés. Bull Miner, 1982, 105: 439–455

    Google Scholar 

  26. Kemp S J, Merriman R J, Bouch J E. Clay mineral reaction progress —The maturity and burial history of the Lias Group of England and Wales. Clay Miner, 2005, 40: 43–61

    Article  Google Scholar 

  27. Zhao X Y. Discussion on the effect of clay minerals in primary migration of petroleum (in Chinese). Acta Sediment Sin, 1990, 8: 67–73

    Google Scholar 

  28. Liu L Y, Liu Y Q, Chen G. Property and diagenitic significance of authigenic clay mineral in upper and middle Jurassic clastic rock of tulufan depression, Xinjiang (in Chinese). Acta Petrol Sin, 1998, 14: 258–268

    Google Scholar 

  29. Waples D W. Time and temperature in petroleum formation: Application of Lopatin’s method to petroleum exploration. Amer Assoc Petrol Geol Bull, 1980, 64: 916–926

    Google Scholar 

  30. Rice D D, Claypool G E. Generation,accumulation,and resource potential of biogenic gas. Amer Assoc Petrol Geol Bull, 1981, 64: 5–25

    Google Scholar 

  31. Tissot B P, Welte D H. Petroleum Formation and Occurrence. Berlin: Springer-Verlag, 1984. 539

    Google Scholar 

  32. Shi J N, Jiang J Q. The research of paleotemperature in Damintun Depression with the apatite fission track method (in Chinese). Petrol Geol Oilfield Dev Daqing, 2003, 22: 18–21

    Google Scholar 

  33. Lee S Y, Gilkes R J. Groundwater geochemistry and composition of hardpans in southwestern Australian regolith. Geoderma, 2005, 126: 59–84

    Article  Google Scholar 

  34. Sieffermann G, Millot G. L’halloysite des sols jeunes sur basaltes récents du centre Cameroun. Bull du Groupe Français des Argiles, 1968, 20: 25–38

    Google Scholar 

  35. Bailey S W. Structures of layer silicates. In: Brindley G W, Brown G, eds. Crystal Structures of Clay Minerals and Their X-ray Identification. London: Mineralogical Society, 1980. 1–123

    Google Scholar 

  36. Churchman G J, Carr R M. The definition and nomenclature of halloysites. Clays Clay Miner, 1975, 23: 382–388

    Article  Google Scholar 

  37. Hart R D, Gilkes R J, Siradz S, et al. The nature of soil kaolins from Indonesia and Western Australia. Clays Clay Miner, 2002, 50: 198–207

    Article  Google Scholar 

  38. Noro H. Hexagonal platy halloysite in an altered tuff bed, Komaki city, Aichi prefecture, Central Japan. Clay Miner, 1986, 21: 401–415

    Article  Google Scholar 

  39. Robertson I D M, Eggleton R A. Weathering of granitic muscovite to kaolinite and halloysite and plagioclase-derived kaolinite to halloysite. Clays Clay Miner, 1991, 39: 113–126

    Article  Google Scholar 

  40. Noro H, Yamada K, Suzuki K. An application of electron probe microanalysis for clay minerals (in Japanese). Kobutsugaku Zasshi, 1981, 15: 42–54

    Google Scholar 

  41. Churchman G J, Davy T J, Aylmore L A G, et al. Characteristics of fine pores in some halloysites. Clay Miner, 1995, 30: 89–98

    Article  Google Scholar 

  42. Adamo P, Violante P, Wilson M J. Tubular and spheroidal halloysite in pyroclastic deposits in the area of the Roccamonfina volcano (southern Italy). Geoderma, 2001, 99: 295–316

    Article  Google Scholar 

  43. Carson C D, Kunze G W. New occurrences of tabular halloysite. Soil Sci Soc Amer Proc, 1970, 34: 538–540

    Article  Google Scholar 

  44. Ross G J, Kodama H, Wang C, et al. Halloysite from a strongly weathered soil at mont Jacques Cartier, Quebec. Soil Sci Soc Amer J, 1983, 47: 327–332

    Article  Google Scholar 

  45. Churchman G J, Theng B K G. Interactions of halloysites with amides: Mineralogical factors affecting complex formation. Clay Miner, 1984, 19: 161–175

    Article  Google Scholar 

  46. Saigusa M, Shoji S, Kato T. Origin and nature of halloysite in ando soils from Towada tephra, Japan. Geoderma, 1978, 20: 115–129

    Article  Google Scholar 

  47. Singh B, Gilkes R J. An electron optical investigation of the alteration of kaolinite to halloysite. Clays Clay Miner, 1992, 40: 212–229

    Article  Google Scholar 

  48. Eggleton R A, Tilley D B. Hisingerite: A ferric kaolin mineral with curved morphology. Clays Clay Miner, 1998, 46: 400–413

    Article  Google Scholar 

  49. Dixon J B. Kaolin and serpentine group minerals. In: Dixon J B, Weed S B, eds. Minerals in Soil Environments. 2nd ed. Soil Sci Soc Amer, Madison, Wisconsin, 1989. 467–526

    Google Scholar 

  50. Fialips C I. Juraj Majzlan, Daniel Beaufort and Alexandra Navrotsky. New thermochemical evidence on the stability of dickite vs. kaolinite. Amer Miner, 2003, 88: 837–845

    Google Scholar 

  51. Beaufort D, Cassagnabère A, Petit S, et al. Kaolinite-to-dickite reaction in sandstone reservoirs. Clay Miner, 1998, 33: 97–316

    Article  Google Scholar 

  52. Lanson B, Beaufort D, Berger G, et al. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review. Clay Miner, 2002, 37: 1–22

    Article  Google Scholar 

  53. Shutov V D, Aleksandrova A V, Losievskaya S A. Genetic interpretation of the polytypism of the kaolinite group in sedimentary rocks. Sedimentology, 1970, 15: 9–82

    Article  Google Scholar 

  54. Brindley G W, Kao C, Harrison J L, et al. Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner, 1986, 34: 239–249

    Article  Google Scholar 

  55. Beaufort D, Cassagnabere A, Petit S, et al. Kaolinite to dickite reaction in sandstone reservoirs. Clay Miner, 1998, 33: 297–316

    Article  Google Scholar 

  56. Ehrenberg S N, Aagaard P, Wilson M J, et al. Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian Continental shelf. Clay Miner, 1993, 28: 325–352

    Article  Google Scholar 

  57. McAulay G E, Burley S D, Johnes L H. Silicate mineral authigenesis in the Hutton and NW Hutton fields: Implications for sub-surface porosity development. In: Parker J R, ed. Petroleum Geology of Northwest Europe. London: Geol Soc, 1993. 1377–1394

    Chapter  Google Scholar 

  58. McAulay G E, Burley S D, Fallick A E, et al. Palaeohydrodynamic fluid flow regimes during diagenesis of the Brent Group in the Hutton-NW Hutton reservoirs: constraints from oxygen isotope studies of authigenic kaolin and reverse flexural modelling. Clay Miner, 1994, 29: 609–626

    Article  Google Scholar 

  59. Whitney G. Role of water in the smectite-to-illite reaction. Clays Clay Miner, 1990, 38: 343–350

    Article  Google Scholar 

  60. Cassan J P, Lucas J. La diagenèse des grès argileux d’Hassi-Messaoud (Sahara): Silicification et dickitisation. Bull Service Carte Géologie Alsace Lorraine, 1966, 19: 241–253

    Google Scholar 

  61. Zimmerle W, Rösch H. Petrogenetic significance of dickite in European sedimentary rocks. Zentralblatt für Geologie und Palaontologie, 1991, 1: 1175–1196

    Google Scholar 

  62. McKenzie D P. Some remarks on the development of sedimentary basins. Earth Planet Sci Lett, 1978, 40: 25–32

    Article  Google Scholar 

  63. Zhou Y S, Little R. Numerical simulation of the thermal maturation, oil generation and migration in the Songliao Basin, Northeastern China. Mar Petrol Geol, 1999, 16: 771–792

    Article  Google Scholar 

  64. Xie X N, Jiao J J, Tang Z H, et al. Evolution of abnormally low pressure and its implications for the hydrocarbon system in the southeast uplift zone of Songliao Basin, China. Amer Assoc Petrol Geol Bull, 2003, 87: 99–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, M., Ji, J., Chen, Z. et al. Evolution of kaolinite subgroup minerals and mixed-layer illite/smectite in the Paleogene Damintun Depression in Liaohe Basin of China and its implication for paleotemperature. Sci. China Earth Sci. 54, 73–83 (2011). https://doi.org/10.1007/s11430-010-4080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4080-2

Keywords

Navigation