Skip to main content
Log in

Molecular studies of cellulose synthase supercomplex from cotton fiber reveal its unique biochemical properties

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Cotton fiber is a highly elongated and thickened single cell that produces large quantities of cellulose, which is synthesized and assembled into cell wall microfibrils by the cellulose synthase complex (CSC). In this study, we report that in cotton (Gossypium hirsutum) fibers harvested during secondary cell wall (SCW) synthesis, GhCesA 4, 7, and 8 assembled into heteromers in a previously uncharacterized 36-mer-like cellulose synthase supercomplex (CSS). This super CSC was observed in samples prepared using cotton fiber cells harvested during the SCW synthesis period but not from cotton stem tissue or any samples obtained from Arabidopsis. Knock-out of any of GhCesA 4, 7, and 8 resulted in the disappearance of the CSS and the production of fiber cells with no SCW thickening. Cotton fiber CSS showed significantly higher enzyme activity than samples prepared from knock-out cotton lines. We found that the microfibrils from the SCW of wild-type cotton fibers may contain 72 glucan chains in a bundle, unlike other plant materials studied. GhCesA4, 7, and 8 restored both the dwarf and reduced vascular bundle phenotypes of their orthologous Arabidopsis mutants, potentially by reforming the CSC hexamers. Genetic complementation was not observed when non-orthologous CesA genes were used, indicating that each of the three subunits is indispensable for CSC formation and for full cellulose synthase function. Characterization of cotton CSS will increase our understanding of the regulation of SCW biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Als-Nielsen, J., and McMorrow, D. (2011). Kinematical scattering I: noncrystalline materials. In: Elements of Modern X-ray Physics. 2nd ed. New Jersey: John Wiley and Sons. 113–146.

    Chapter  Google Scholar 

  • Atanassov, Pittman, J.K., and Turner, S.R. (2009). Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. J Biol Chem 284, 3833–3841.

    Article  CAS  PubMed  Google Scholar 

  • Brown, C., Leijon, F., and Bulone, V. (2012). Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis. Nat Protoc 7, 1634–1650.

    Article  CAS  PubMed  Google Scholar 

  • Brown, D.M., Zeef, L.A.H., Ellis, J., Goodacre, R., and Turner, S.R. (2005). Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17, 2281–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu, L., Himmel, M.E., and Crowley, M.F. (2015). The molecular origins of twist in cellulose I-beta. Carbohydr Polyms 125, 146–152.

    Article  CAS  Google Scholar 

  • Chu, B., and Hsiao, B.S. (2001). Small-angle X-ray scattering of polymers. Chem Rev 101, 1727–1762.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D.J. (2005). Growth of the plant cell wall. Nat Rev Mol Cell Biol 6, 850–861.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D.J. (2014). Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22, 122–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove, D.J. (2018). Primary walls in second place. Nat Plants 4, 748–749.

    Article  PubMed  Google Scholar 

  • Delmer, D.P. (1999). Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50, 245–276.

    Article  CAS  PubMed  Google Scholar 

  • Ding, S.Y., and Himmel, M.E. (2006). The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54, 597–606.

    Article  CAS  PubMed  Google Scholar 

  • Ding, S.Y., Zhao, S., and Zeng, Y. (2014). Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose 21, 863–871.

    Article  CAS  Google Scholar 

  • Endler, A., and Persson, S. (2011). Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4, 199–211.

    Article  CAS  PubMed  Google Scholar 

  • Erb, K.H., Kastner, T., Plutzar, C., Bais, A.L.S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M., et al. (2018). Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes, A.N., Thomas, L.H., Altaner, C.M., Callow, P., Forsyth, V.T., Apperley, D.C., Kennedy, C.J., and Jarvis, M.C. (2011). Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108, E1195–E1203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardiner, J.C., Taylor, N.G., and Turner, S.R. (2003). Control of cellulose synthase complex localization in developing xylem. Plant Cell 15, 1740–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giddings, T.H. Jr., Brower, D.L., and Staehelin, L.A. (1980). Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84, 327–339.

    Article  PubMed  Google Scholar 

  • Gonneau, M., Desprez, T., Guillot, A., Vernhettes, S., and Höfte, H. (2014). Catalytic subunit stoichiometry within the cellulose synthase complex. Plant Physiol 166, 1709–1712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haigler, C.H., Singh, B., Wang, G., and Zhang, D. (2009). Genomics of cotton fiber secondary wall deposition and cellulose biogenesis. In: Paterson, A.H., eds. Genetics and Genomics of Cotton. Plant Genetics and Genomics: Crops and Models, vol 3. New York: Springer. 385–417.

    Chapter  Google Scholar 

  • Herth, W. (1983). Arrays of plasma-membrane “rosettes” involved in cellulose microfibril formation of Spirogyra. Planta 159, 347–356.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J.L. Jr., Hammudi, M.B., and Tien, M. (2014). The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26, 4834–4842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, X., Fu, A., Garcia, V.J., Buchanan, B.B., and Luan, S. (2015). PSB27: a thylakoid protein enabling Arabidopsis to adapt to changing light intensity. Proc Natl Acad Sci USA 112, 1613–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, G., Wu, Z., Percy, R.G., Bai, M., Li, Y., Frelichowski, J.E., Hu, J., Wang, K., Yu, J.Z., and Zhu, Y. (2020). Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat Genet 52, 516–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, G., Huang, J.Q., Chen, X.Y., and Zhu, Y.X. (2021a). Recent advances and future perspectives in cotton research. Annu Rev Plant Biol 72, 437–462.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Chen, F., Wu, S., Li, J., and Xu, W. (2016). Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. Sci China Life Sci 59, 194–205.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Chen, F., Guo, Y., Gan, X., Yang, M., Zeng, W., Persson, S., Li, J., and Xu, W. (2021b). GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis-elements. New Phytol 232, 1718–1737.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M., Campbell, L., and Turner, S. (2016). Secondary cell walls: biosynthesis and manipulation. J Exp Bot 67, 515–531.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M., Mishra, L., Carr, P., Pilling, M., Gardner, P., Mansfield, S.D., and Turner, S. (2018). Exploiting cellulose synthase (CESA) class specificity to probe cellulose microfibril biosynthesis. Plant Physiol 177, 151–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurek, I., Kawagoe, Y., Jacob-Wilk, D., Doblin, M., and Delmer, D. (2002). Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci USA 99, 11109–11114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lampugnani, E.R., Flores-Sandoval, E., Tan, Q.W., Mutwil, M., Bowman, J.L., and Persson, S. (2019). Cellulose synthesis—central components and their evolutionary relationships. Trends Plant Sci 24, 402–412.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., Kohel, R.J., Ma, Z., Shang, H., Ma, X., Wu, J., et al. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33, 524–530.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Chen, C., Brozena, A.H., Zhu, J.Y., Xu, L., Driemeier, C., Dai, J., Rojas, O.J., Isogai, A., Wågberg, L., et al. (2021). Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Little, A., Schwerdt, J.G., Shirley, N.J., Khor, S.F., Neumann, K., O’Donovan, L.A., Lahnstein, J., Collins, H.M., Henderson, M., Fincher, G.B., et al. (2018). Revised phylogeny of the Cellulose synthase gene superfamily: insights into cell wall evolution. Plant Physiol 177, 1124–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Zhang, X., Dou, L., Li, W., Zhou, X., Liu, Y., Pei, X., Ren, Z., Zhang, W., Li, H., et al. (2020). Patterns of presence-absence variants in Upland cotton. Sci China Life Sci 63, 1600–1603.

    Article  PubMed  Google Scholar 

  • Lundquist, P.K., Mantegazza, O., Stefanski, A., Stühler, K., and Weber, A. P.M. (2017). Surveying the oligomeric state of Arabidopsis thaliana chloroplasts. Mol Plant 10, 197–211.

    Article  CAS  PubMed  Google Scholar 

  • Maes, J., Castro, N., De Nolf, K., Walravens, W., Abécassis, B., and Hens, Z. (2018). Size and concentration determination of colloidal nanocrystals by small-angle X-ray scattering. Chem Mater 30, 3952–3962.

    Article  CAS  Google Scholar 

  • Martínez-Sanz, M., Pettolino, F., Flanagan, B., Gidley, M.J., and Gilbert, E. P. (2017). Structure of cellulose microfibrils in mature cotton fibres. Carbohydr Polyms 175, 450–463.

    Article  CAS  Google Scholar 

  • Meents, M.J., Watanabe, Y., and Samuels, A.L. (2018). The cell biology of secondary cell wall biosynthesis. Ann Bot 121, 1107–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan, J.L.W., Strumillo, J., and Zimmer, J. (2013). Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493, 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, S.C., and Brown, R.M. Jr. (1980). Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol 84, 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Mutwil, M., Debolt, S., and Persson, S. (2008). Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11, 252–257.

    Article  CAS  PubMed  Google Scholar 

  • Neutelings, G. (2011). Lignin variability in plant cell walls: contribution of new models. Plant Sci 181, 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Newman, R.H., Hill, S.J., and Harris, P.J. (2013). Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163, 1558–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nixon, B.T., Mansouri, K., Singh, A., Du, J., Davis, J.K., Lee, J.G., Slabaugh, E., Vandavasi, V.G., O’Neill, H., Roberts, E.M., et al. (2016). Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci Rep 6, 28696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda, K., Li, L., Kudlicka, K., Kuga, S., and Brown Jr, R.M. (1993). [beta]-glucan synthesis in the cotton fiber (I. Identification of [beta]-1,4- and [beta]-1,3-glucans synthesized in vitro). Plant Physiol 101, 1131–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olek, A.T., Rayon, C., Makowski, L., Kim, H.R., Ciesielski, P., Badger, J., Paul, L.N., Ghosh, S., Kihara, D., Crowley, M., et al. (2014). The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers. Plant Cell 26, 2996–3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omadjela, O., Narahari, A., Strumillo, J., Melida, H., Mazur, O., Bulone, V., and Zimmer, J. (2013). BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci USA 110, 17856–17861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paredez, A.R., Somerville, C.R., and Ehrhardt, D.W. (2006). Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495.

    Article  CAS  PubMed  Google Scholar 

  • Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P., and Stalker, D. M. (1996). Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93, 12637–12642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettolino, F.A., Walsh, C., Fincher, G.B., and Bacic, A. (2012). Determining the polysaccharide composition of plant cell walls. Nat Protoc 7, 1590–1607.

    Article  CAS  PubMed  Google Scholar 

  • Polko, J.K., and Kieber, J.J. (2019). The regulation of cellulose biosynthesis in plants. Plant Cell 31, 282–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purushotham, P., Cho, S.H., Díaz-Moreno, S.M., Kumar, M., Nixon, B.T., Bulone, V., and Zimmer, J. (2016). A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro. Proc Natl Acad Sci USA 113, 11360–11365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purushotham, P., Ho, R., and Zimmer, J. (2020). Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science 369, 1089–1094.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, Z., Lampugnani, E.R., Yan, X.F., Khan, G.A., Saw, W.G., Hannah, P., Qian, F., Calabria, J., Miao, Y., Grüber, G., et al. (2021). Structure of Arabidopsis CESA3 catalytic domain with its substrate UDP-glucose provides insight into the mechanism of cellulose synthesis. Proc Natl Acad Sci USA 118, e2024015118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, Y.M., and Zhu, Y.X. (2011). How cotton fibers elongate: a tale of linear cell-growth mode. Curr Opin Plant Biol 14, 106–111.

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Rodríguez, E.A., and McFarlane, H.E. (2021). Insights from the structure of a plant cellulose synthase trimer. Trends Plant Sci 26, 4–7.

    Article  PubMed  CAS  Google Scholar 

  • Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheible, W.R., Eshed, R., Richmond, T., Delmer, D., and Somerville, C. (2001). Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci USA 98, 10079–10084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville, C. (2006). Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22, 53–78.

    Article  CAS  PubMed  Google Scholar 

  • Sticklen, M.B. (2008). Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9, 433–443.

    Article  CAS  PubMed  Google Scholar 

  • Stork, J., Harris, D., Griffiths, J., Williams, B., Beisson, F., Li-Beisson, Y., Mendu, V., Haughn, G., and Debolt, S. (2010). CELLULOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in arabidopsis epidermal testa cells. Plant Physiol 153, 580–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroud, D.A., Surgenor, E.E., Formosa, L.E., Reljic, B., Frazier, A.E., Dibley, M.G., Osellame, L.D., Stait, T., Beilharz, T.H., Thorburn, D.R., et al. (2016). Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123–126.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., Murata, K., Yamazaki, M., Onosato, K., Miyao, A., and Hirochika, H. (2003). Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133, 73–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, N.G. (2008). Cellulose biosynthesis and deposition in higher plants. New Phytol 178, 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, N.G., Scheible, W.R., Cutler, S., Somerville, C.R., and Turner, S.R. (1999). The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11, 769–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, L.H., Forsyth, V.T., Sturcová, A., Kennedy, C.J., May, R.P., Altaner, C.M., Apperley, D.C., Wess, T.J., and Jarvis, M.C. (2013). Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161, 465–476.

    Article  CAS  PubMed  Google Scholar 

  • Turner, S.R., and Somerville, C.R. (1997). Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9, 689–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K., Wang, D., Zheng, X., Qin, A., Zhou, J., Guo, B., Chen, Y., Wen, X., Ye, W., Zhou, Y., et al. (2019a). Multi-strategic RNA-seq analysis reveals a high-resolution transcriptional landscape in cotton. Nat Commun 10, 4714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, J., Elliott, J.E., and Williamson, R.E. (2008). Features of the primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana. J Exp Bot 59, 2627–2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Cheng, H., Xiong, F., Ma, S., Zheng, L., Song, Y., Deng, K., Wu, H., Li, F., and Yang, Z. (2020). Comparative phosphoproteomic analysis of BR-defective mutant reveals a key role of GhSK13 in regulating cotton fiber development. Sci China Life Sci 63, 1905–1917.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Tu, L., Yuan, D., Zhu, D., Shen, C., Li, J., Liu, F., Pei, L., Wang, P., Zhao, G., et al. (2019b). Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51, 224–229.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P., Zhang, J., Sun, L., Ma, Y., Xu, J., Liang, S., Deng, J., Tan, J., Zhang, Q., Tu, L., et al. (2018). High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16, 137–150.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., and Hong, M. (2016). Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67, 503–514.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, Y., Meents, M.J., McDonnell, L.M., Barkwill, S., Sampathkumar, A., Cartwright, H.N., Demura, T., Ehrhardt, D.W., Samuels, A.L., and Mansfield, S.D. (2015). Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science 350, 198–203.

    Article  CAS  PubMed  Google Scholar 

  • Weber, K., and Osborn, M. (1969). The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244, 4406–4412.

    Article  CAS  PubMed  Google Scholar 

  • Wen, X., Huang, G., Li, C., and Zhu, Y. (2021). A Malvaceae-specific miRNA targeting the newly duplicated GaZIP1L to regulate Zn2+ ion transporter capacity in cotton ovules. Sci China Life Sci 64, 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Wittig, I., Braun, H.P., and Schägger, H. (2006). Blue native PAGE. Nat Protoc 1, 418–428.

    Article  CAS  PubMed  Google Scholar 

  • Xu, W., Cheng, H., Zhu, S., Cheng, J., Ji, H., Zhang, B., Cao, S., Wang, C., Tong, G., Zhen, C., et al. (2021). Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts. New Phytol 231, 1478–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yager, K.G., Zhang, Y., Lu, F., and Gang, O. (2013). Periodic lattices of arbitrary nano-objects: modeling and applications for self-assembled systems. J Appl Crystlogr 47, 118–129.

    Article  CAS  Google Scholar 

  • Yang, Z., Qanmber, G., Wang, Z., Yang, Z., and Li, F. (2020). Gossypium genomics: trends, scope, and utilization for cotton improvement. Trends Plant Sci 25, 488–500.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Deng, L., Qian, Q., Xiong, G., Zeng, D., Li, R., Guo, L., Li, J., and Zhou, Y. (2009). A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol 71, 509–524.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Gao, Y., Zhang, L., and Zhou, Y. (2021a). The plant cell wall: Biosynthesis, construction, and functions. J Integr Plant Biol 63, 251–272.

    Article  PubMed  Google Scholar 

  • Zhang, L., Pu, H., Duan, Z., Li, Y., Liu, B., Zhang, Q., Li, W., Rochaix, J. D., Liu, L., and Peng, L. (2018). Nucleus-encoded protein BFA1 promotes efficient assembly of the chloroplast ATP synthase coupling factor 1. Plant Cell 30, 1770–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J., Zhang, J., Saski, C.A., Scheffler, B.E., Stelly, D.M., et al. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33, 531–537.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., Zheng, Y., and Cosgrove, D.J. (2016a). Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85, 179–192.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Man, Y., Zhuang, X., Shen, J., Zhang, Y., Cui, Y., Yu, M., Xing, J., Wang, G., Lian, N., et al. (2021b). Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. Sci China Life Sci 64, 1392–1422.

    Article  PubMed  Google Scholar 

  • Zhang, X., Xue, Y., Guan, Z., Zhou, C., Nie, Y., Men, S., Wang, Q., Shen, C., Zhang, D., Jin, S., et al. (2021c). Structural insights into homotrimeric assembly of cellulose synthase CesA7 from Gossypium hirsutum. Plant Biotechnol J 19, 1579–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Nikolovski, N., Sorieul, M., Vellosillo, T., McFarlane, H.E., Dupree, R., Kesten, C., Schneider, R., Driemeier, C., Lathe, R., et al. (2016b). Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nat Commun 7, 11656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Jiao, Y., Jiao, H., Zhao, H., and Zhu, Y.X. (2017). Two-step functional innovation of the stem-cell factors WUS/WOX5 during plant evolution. Mol Biol Evol 34, 640–653.

    CAS  PubMed  Google Scholar 

  • Zhong, R., Cui, D., and Ye, Z.H. (2019). Secondary cell wall biosynthesis. New Phytol 221, 1703–1723.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31690090, 31690091, 31830057, 32070207) and the Foundation of Hubei Hongshan Laboratory (2021hszd014). We thank Shitang Huang for helping with the radiolabeling assay, Wenxuan Zou for assistance in the ultra-thin section, and Cao Li for GC-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxian Zhu.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Zhai, Y., Zhang, L. et al. Molecular studies of cellulose synthase supercomplex from cotton fiber reveal its unique biochemical properties. Sci. China Life Sci. 65, 1776–1793 (2022). https://doi.org/10.1007/s11427-022-2083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2083-9

Keywords

Navigation