Skip to main content

Genomics of Cotton Fiber Secondary Wall Deposition and Cellulose Biogenesis

  • Chapter
  • First Online:
Genetics and Genomics of Cotton

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 3))

Abstract

The deposition of > 90% cellulose in the cotton fiber secondary wall makes this unique cell powerful for understanding cellulose biogenesis, a process with great importance in nature and industry. This chapter provides an overview of cellulose biogenesis, summarizes how cotton fiber has previously facilitated unique insights in this field, and explains how cellulose is important in terms of cotton fiber physical properties. The nature of the cotton fiber secondary wall transcriptome is discussed, including comparisons to primary-wall-stage fiber and the Arabidopsis proteome. Microarray data, including validation by quantitative reverse transcription PCR, are described to show that transcriptomes for secondary wall deposition in cotton fiber and xylem are similar. The functional context of selected genes that are up-regulated for secondary wall deposition is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, K.L. and Wendel, J.F. (2004) Exploring the genomic mysteries of polyploidy in cotton. Biol. J. Linn. Soc. 82: 573–581.

    Google Scholar 

  • Amor Y., Haigler, C.H., Johnson, S., Wainscott, M. and Delmer, D.P. (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92: 9353–9357.

    PubMed  CAS  Google Scholar 

  • Arpat, A., Waugh, M.P., Sullivan, J., Gonzales, M., Frisch, D., Main, D., Wood, T., Leslie, A., Wing, R. and Wilkins, T. (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol. Biol. 54: 911–929.

    PubMed  CAS  Google Scholar 

  • Arthur, J.C. (1990) Cotton. In: J.I. Kroschwitz (Ed.), Polymers: Fibers and Textiles, a Compendium, John Wiley and Sons, New York, pp. 118–141.

    Google Scholar 

  • Aspeborg, H., Schrader, J., Coutinho, P.M., Stam, M., Kallas, A., Djerbi, S., Nilsson, P., Denman, S., Amini, B., Sterky, F., Master, E., Sandberg, G., Mellerowicz, E., Sundberg, G., Henrissat, B. and Teeri, T.T. (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol. 137: 983–997.

    PubMed  CAS  Google Scholar 

  • Baskin, T.I. (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215: 150–171.

    PubMed  CAS  Google Scholar 

  • Benedict, C.R., Kohel, R.J. and Jividen, G.M. (1994) Crystalline cellulose and cotton fiber strength. Crop Sci. 34: 147–151.

    CAS  Google Scholar 

  • Benedict, C.R., Kohel, R.J. and Lewis, H.L. (1999) Cotton fiber quality, In: C.W. Smith, J.T. Cothren (Eds.), Cotton: Origin, History, Technology, and Production, John Wiley & Sons, New York, pp. 269–288.

    Google Scholar 

  • Bieniawska, Z., Paul Barratt, D.H., Garlick, A.P., Thole, V., Kruger, N.J., Martin, C., Zrenner, R. and Smith, A.M. (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 49: 810–828.

    PubMed  CAS  Google Scholar 

  • Bonaldo, M.F., Lennon, G. and Soares, M.B. (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res. 6:791–806.

    PubMed  CAS  Google Scholar 

  • Bowman, J.L., Floyd, S.K. and Sakakibara, K. (2007) Green genes—comparative genomics of the green branch of life. Cell 129: 229–234.

    PubMed  CAS  Google Scholar 

  • Bradow, J.M. and Davidonis, G.W. (2000) Review: Quantitation of fiber quality and the cotton production-processing interface: A physiologist’s perspective. J. Cotton Sci. 4: 34–64.

    Google Scholar 

  • Brady, S.M., Song, S., Dhugga, K.S., Rafalski, J.A. and Benfey, P.N. (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol. 143:172–87.

    PubMed  CAS  Google Scholar 

  • Brocard-Gifford, I., Lynch, T. J., Garcia, E. M., Malhotra, B. and Finklestein, R. R. (2004) The Arabidopsis thaliana abscisic acid insensitive8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16: 406–421.

    PubMed  CAS  Google Scholar 

  • Brown, D.M., Zeef, L. A.-H., Ellis, J., Goodacre, R. and Turner, S.R. (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell: 17: 2281–2295.

    PubMed  CAS  Google Scholar 

  • Brown, R.M. Jr. and Saxena, I.M. (Eds.) (2007) Cellulose: Molecular and Structural Biology. Springer, Dordrecht, 379 pp.

    Google Scholar 

  • Burk, D.H. and Ye, Z.-H. (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule severing protein. Plant Cell 14: 2145–2160.

    PubMed  CAS  Google Scholar 

  • Busch, W. and Lohmann, J.U. (2007) Profiling a plant: expression analysis in Arabidopsis. Curr. Opin. Plant Biol. 10: 136–141.

    PubMed  CAS  Google Scholar 

  • Carpita, N.C. and Delmer, D.P. (1981) Concentration and metabolic turnover of UDP-glucose in developing cotton fibers. J. Biol. Chem. 256: 308–315.

    PubMed  CAS  Google Scholar 

  • Chanzy, H., Imada, K. and Vuong, R. (1978) Electron diffraction from the primary wall of cotton fibers. Protoplasma 94: 299–306.

    Google Scholar 

  • Chu, A., Chen, H., Zhang, Y., Zhang, Z., Zheng, N., Yin, B., Yan, H., Zhu, L., Zhao, X., Yuan, M., Zhang, X. and Xie, Q. (2007) Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis. Plant Physiol. 143: 213–224.

    PubMed  CAS  Google Scholar 

  • Cronn, R.C., Small, R.L. and Wendel, J.F. (1999) Duplicated genes evolve independently after polyploidy formation in cotton. Proc. Natl. Acad. Sci. USA 96: 14406–14411.

    PubMed  CAS  Google Scholar 

  • Delmer, D.P. (1999 Cellulose biosynthesis in developing cotton fibers. In: A.S. Basra (Ed.), Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing, The Haworth Press, New York, pp. 85–112.

    Google Scholar 

  • Diatchenko, L., Lau, Y.C., Campbell, A.P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K. Gurskaya, N., Sverdlov, E.D. and Siebert, P.D. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93:6025–6030.

    PubMed  CAS  Google Scholar 

  • Diotallevi, F. and Mulder, B. (2007) The cellulose synthase complex: a polymerization driven supramolecular motor. Biophys. J. 92: 2666–2673.

    PubMed  CAS  Google Scholar 

  • Endrizzi, J.E., Turcotte, E.L. and Kohel, R.J. (1985) Genetics, cytology, and evolution of Gossypium. Adv. Gen. 23: 271–354.

    Google Scholar 

  • Farrokhi, N., Burton, R.A., Brownfield, L., Hrmova, M., Wilson, S.M., Bacic, A. and Fincher, G.B. (2006) Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to identification of key genes. Plant Biotech. J. 4: 145–167.

    CAS  Google Scholar 

  • Franz, G. (1969) Soluble nucleotides in growing cotton hair. Phytochem. 8: 737–741.

    CAS  Google Scholar 

  • Fryxell, P.A. (1979) The Natural History of the Cotton Tribe (Malvaceae, Tribe Gossypieae). Texas A&M University Press, College Station, 245 pp.

    Google Scholar 

  • Gipson, J.R. (1986) Temperature effects on growth, development, and fiber properties. In: J.R. Mauney and J. McD. Stewart (Eds.), Cotton Physiology, The Cotton Foundation, Memphis, pp. 47–56.

    Google Scholar 

  • Guo, J.-Y., Wang, L.-J., Chen, S.-P., Hu, W.-L. and Chen, X.-Y. (2007) Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary wall synthesis. Cell Research 2007: 1–13.

    Google Scholar 

  • Gutierrez, R.A., Green, P.J., Keegstra, K. and Ohlrogge, J.B. (2004) Phylogenetic profiling of the Arabidopsis thaliana proteome: what proteins distinguish plants from other organisms. Genome Biology 5:R53 (http://genomebiology.com/2004/5/8/R53).

  • Haigler, C.H. (1985) The functions and biogenesis of native cellulose, In: S.H. Zeronian and T.P. Nevell TP (Eds.), Cellulose Chemistry and its Applications, Ellis Horwood, Chichester, pp 30–83.

    Google Scholar 

  • Haigler, C.H. (1991) The relationship between polymerization and crystallization in cellulose biogenesis, In: C.H. Haigler and P. Weimer (Eds.), Biosynthesis and Biodegradation of Cellulose, Marcel Dekker, New York, pp 99–124.

    Google Scholar 

  • Haigler, C.H., Ivanova-Datcheva, M., Hogan, P.S. Salnikov, V.V., Hwang, S., Martin, L.K. and Delmer, D.P. (2001) Carbon partitioning to cellulose synthesis. Plant Mol. Biol. 47: 29–51.

    PubMed  CAS  Google Scholar 

  • Haigler, C.H., Zhang, D. and Wilkerson, C.G. (2005) Biotechnological improvement of cotton fibre maturity. Physiol. Plant. 124: 285–294.

    CAS  Google Scholar 

  • Haigler, C.H. (2006) Establishing the cellular and biophysical context of cellulose synthesis. In: T. Hayashi (Ed.), The Science and Lore of the Plant Cell Wall: Biosynthesis, Structure and Function, BrownWalker Press: Boca Raton, pp. 97–105.

    Google Scholar 

  • Haigler, C.H. (2007) Substrate supply for cellulose synthesis and its stress sensitivity in the cotton fiber. In: R.M. Brown Jr, and I. Saxena (Eds.), Cellulose: Molecular and Structural Biology, Springer: New York, pp. 145–166.

    Google Scholar 

  • Haigler, C.H., Singh, B., Zhang, D., Hwang, S., Wu, C., Cai, W.X., Hozain, M., Kang, W., Kiedaisch, B., Strauss, R.E., Hequet, E.F., Wyatt, B.G., Jividen, G.M. and Holaday, A.S. (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol. Biol. 63: 815–832.

    PubMed  CAS  Google Scholar 

  • Han, Z.G., Guo, W.Z., Song, X.L. and Zhang, T.Z, (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol. Gen. Genom. 272: 308–327.

    CAS  Google Scholar 

  • Hardin, S.C., Duncan, K.A. and Huber, S.C. (2006) Determination of structural requirements and probable regulatory effectors for membrane association of maize sucrose synthase. Plant Physiol. 141: 1106–1119.

    PubMed  CAS  Google Scholar 

  • Heinze ,T. (1998) New ionic polymers by cellulose functionalization. Macromol. Chem. Phys. 1999: 2341–2364.

    Google Scholar 

  • Hertzberg, M., Aspeborg, H., Schrader. J., Andersson, A., Erlandsson, R., Blomqvist, K., Bhalerao, R., Uhlén, M., Teeri, T.T., Lundeberg, J., Sundberg, B., Nilsson, and P. Sandberg, G. (2001) A transcriptional roadmap to wood formation. Proc. Natl. Acad. Sci. USA 98: 14732–14737.

    PubMed  CAS  Google Scholar 

  • Hindeleh, A.M., Johnson, D.J. and Monatgue, P.E. (1980) Computational methods for profile resolution and crystallite size evaluation in fibrous polymers, In: A.D. French and K.H. Gardener (Eds.), Fiber Diffraction Methods: ACS Symposia no. 141, p. 149–182.

    Google Scholar 

  • Howles, P.A., Birch, R.J., Collings, D.A., Gebbie, L.K., Hurley, U.A., Hocart, C.H., Arioli, T. and Williamson, R.E. (2006) A mutation in an Arabidopsis ribose 5-phosphate isomerase reduces cellulose synthesis and is rescued by exogenous uridine. Plant J. 48: 606–618.

    PubMed  CAS  Google Scholar 

  • Hsieh, Y.-L. (1999) Structural development of cotton fibers and linkages to fiber quality. In: A.S. Basra (Ed.), Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing, The Haworth Press, New York, pp. 137–166.

    Google Scholar 

  • Hsieh, Y.-L., Hu, X.P. and Nguyen, A. (1997) Strength and crystalline structure of developing Acala cotton. Text. Res. J. 67: 529–536.

    CAS  Google Scholar 

  • Hu, X.P. and Hsieh, Y.-L. (1996) Crystalline structure of developing cotton fibers. J. Polym. Sci.: Part B: Polym. Phys. 34: 1451–1459.

    CAS  Google Scholar 

  • Hu, H.Y., Zhong, R., Morrison, W. and Ye, Z. (2003) The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta 217: 912–921.

    PubMed  CAS  Google Scholar 

  • Hutchinson, J.B., Stephens, S.G. and Dodds, K.S. (1945) The seed hairs of Gossypium. Ann. Bot. IX (36): 360–368.

    Google Scholar 

  • Jacob-Wilk, D., Kurek, I., Hogan, P. and Delmer, D.P. (2006) The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc. Natl. Acad. Sci. USA 103: 12191–12196.

    PubMed  CAS  Google Scholar 

  • Ji, S.J., Lu,Y.C., Feng,J.X., Wei,G., Li,J., Shi,Y.H., Fu,Q., Liu,D., Luo,J.C. and Zhu, Y.X. (2003) Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res. 31: 2534–2543.

    PubMed  CAS  Google Scholar 

  • Jiang, C., Wright, R.J., El-Zik, K.M. and Paterson, A.H. (1998) Polyploid formation created unique avenues for response to selection in Gossypium. Proc. Natl. Acad. Sci. USA 95(8): 4419–4424.

    PubMed  CAS  Google Scholar 

  • Joshi, C.P. and Mansfield, S.D. (2007) The cellulose paradox—simple molecule, complex biosynthesis. Curr. Opin. Plant Biol. 10: 220–226.

    PubMed  CAS  Google Scholar 

  • Ko, J.-H., Beers, E.P. and Han, K.H. (2006) Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol. Gen. Genet. 276: 517–531.

    CAS  Google Scholar 

  • Kim, H.J. and Triplett, B.A. (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127: 1361–1366.

    PubMed  CAS  Google Scholar 

  • Kim, H.J., Williams, M.Y. and Triplett, B.A. (2002) A novel expression assay system for fiber-specific promoters in developing cotton fibers. Plant Mol, Biol. Rep 20: 7–18.

    CAS  Google Scholar 

  • Kurek, I., Kawogoe, Y., Jacob-Wilk, D., Doblin, M. and Delmer, D. (2002) Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domain. Proc. Natl. Acad. Sci. 99: 11109–11114.

    PubMed  CAS  Google Scholar 

  • Lafarguette, F., Leple, J.-C., Dejardin, A., Laurans, F., Costa, G., Lesage-Descauses, M.-C. and Pilate, G. (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol. 164: 107–121.

    CAS  Google Scholar 

  • Laosinchai, W. (2002) Molecular and biochemical studies of cellulose and callose synthase. Ph.D. Dissertation, The University of Texas at Austin, 207 pp.

    Google Scholar 

  • Lertpiriyapong, K. and Sung, Z. R. (2003) The elongation defective1 mutant of Arabidopsis is impaired in the gene encoding a serine-rich secreted protein. Plant Mol. Biol. 53: 581–595.

    PubMed  CAS  Google Scholar 

  • Lewin, M. and Pearce, E.M. (Eds.) (1998) Handbook of Fiber Chemistry, 2nd edn, Marcel Dekker: NY, 724 pp.

    Google Scholar 

  • Lutfiyya, L.L,, Xu, N., D’Ordine, R.L., Morrell, J.A., Miller, P.W. and Duff, S.M.G. (2006) Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. J. Plant Physiol. Doi:10.1016/j/jpiph.2006.04.014.

    Google Scholar 

  • Martin, L.K. and Haigler, C.H. (2004) Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers. Cellulose 11:339–349.

    CAS  Google Scholar 

  • Meinert, M.C. and Delmer, D.P. (1977) Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol. 59: 1088–1097.

    PubMed  CAS  Google Scholar 

  • Nakajima, K., Kawamura, T. and Hashimoto. T. (2006) Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis. Plant Cell Physiol. 47: 513–522.

    PubMed  CAS  Google Scholar 

  • Niklas, K.J. (1992) Plant Biomechanics, An Engineering Approach to Plant Form and Function, Univ Chicago Press, Chicago, 607 pp.

    Google Scholar 

  • Paradez, A.R., Someville, C.R. and Erhardt, D.W. (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312: 1491–1495.

    Google Scholar 

  • Pear, J., Kawagoe, Y., Schreckengost, W., Delmer, D.P. and Stalker, D. (1996) Higher plants contain homologs of the CelA genes that encode the catalytic subunit of the bacterial cellulose synthases. Proc. Natl. Acad. Sci. USA 93: 12637–12642.

    PubMed  CAS  Google Scholar 

  • Pena, M.J., Zhong, R., Zhou, G.-K., Richardson, E.A., O’Neill, M.A., Darvill, A.G., York, W.S. and Ye, Z.-H. (2007) Arabidopsis irregular xylem8 and irregular xylem 9: Implications for the complexity of glucuoronxylan biosynthesis. Plant Cell 19: 549–563.

    PubMed  CAS  Google Scholar 

  • Peng, L., Kawagoe, Y., Hogan, P. and Delmer, D. (2002) Sitosterol-ß-glucoside as primer for cellulose synthesis in plants. Science 295: 147–150.

    PubMed  CAS  Google Scholar 

  • Persson S., Wei, H., Milne, J., Page, G.P. and Somerville, C.R. (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc. Natl. Acad. Sci. USA 102: 8633–8638.

    PubMed  CAS  Google Scholar 

  • Pilate, G., Dejardin, A., Laurans, F. and Leple, J.-C. (2004) Tension wood as a model for functional genomics of wood formation. New Phytol. 164: 63–72.

    CAS  Google Scholar 

  • Piling, E. and Hofte, H. (2003) Feedback from the wall. Curr, Opin. Plant Biol. 6: 611–616.

    Google Scholar 

  • Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P. and Levine, A. (1999) The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119: 849–858.

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2005). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL http://www.R-project.org.

  • Ranocha, P., Chabannes, M., Chamayou, S., Danoun, S., Jauneau, A., Boudet, A.-M. and Goffner, D. (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 129: 145–155.

    PubMed  CAS  Google Scholar 

  • Rebenfield, L. (1990) Fibers. In: J.I. Kroschwitz (Ed.), Polymers: Fibers and Textiles, a Compendium. John Wiley and Sons, New York, pp. 219–305.

    Google Scholar 

  • Robert, S., Bichet, A., Grandjean, O., Kierzkowski, D., Satiat-Jeunemaitre, B., Pelletier, S., Hauser, M.-T., Hofte, H. and Vernhettes, S. (2005) An Arabidopsis endo-1,4-ß-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell 17: 3378–3389.

    PubMed  CAS  Google Scholar 

  • Roberts, E.M., Nunna, R.R., Huang, J.Y., Trolinder, N.L. and Haigler, C.H. (1992) Effects of cycling temperatures on fiber metabolism in cultured cotton ovules. Plant Physiol. 100: 979–986.

    PubMed  CAS  Google Scholar 

  • Rowland, S.P. and Bertoniere, N.R. (1985) Chemical methods for studying supramolecular structure. In: T.P. Nevell and S.H. Zeronian (Eds.), Cellulose Chemistry and its Applications, Ellis Horwood, Chichester, pp. 112–137.

    Google Scholar 

  • Ruan, Y.-L. (2007) Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single-celled cotton fiber. Func. Plant Biol. 34: 1–10

    CAS  Google Scholar 

  • Ryser, U. (1985) Cell wall biosynthesis in differentiating cotton fiber. Eur. J. Cell Biol. 39: 236–256.

    CAS  Google Scholar 

  • Ryser, U. (1999) Cotton fiber initiation and histodifferentiation. In: A.S. Basra (Ed.), Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing, The Haworth Press, New York, pp. 1–46.

    Google Scholar 

  • Salnikov, V., Grimson, M.J., Seagull, R.W. and Haigler, C.H. (2003) Localization of sucrose synthase and callose in freeze substituted, secondary wall stage, cotton fibers. Protoplasma 221: 175–184.

    PubMed  CAS  Google Scholar 

  • Saxena, I.M. and Brown, R.M. (2005) Cellulose biosynthesis: Current views and evolving concepts. Ann. Bot. 96: 9–21.

    PubMed  CAS  Google Scholar 

  • Scheible, W.-R. and Pauly, M. (2004) Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr. Opin. Plant. Biol. 7: 1–11.

    Google Scholar 

  • Schneider, M., Schwart, J.P.J. and Sanderson, R.D. (1996) Biological variation in the degree of polymerization of cotton lint cellulose produced in South Africa Part II: Comparing Acala 1517 of the Middle Transvaal and the Northern Cape. Text. Res. J. 66: 428–435.

    CAS  Google Scholar 

  • Schrick, K., Fukioka, S., Takatsuto, S., Stierhof, Y.-D., Stransky, H., Yoshida, S. and Jurgens, G, (2004) A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J. 38: 227–243.

    PubMed  CAS  Google Scholar 

  • Seagull, R.W. (1993) Cytoskeletal involvement in cotton fiber growth and development. Micron 24: 643–660.

    Google Scholar 

  • Shi, Y.-H., Zhu, S.-W., Mao, X.-Z., Feng, J.-X., Qin, Y.-M., Zhang, L., Cheng, J., Wei, L.-P., Wang, Z.-Y. and Zhu, Y.-X. (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18: 651–664.

    PubMed  CAS  Google Scholar 

  • Smyth, G. K. and Speed, T. P. (2003). Normalization of cDNA microarray data. Methods 31: 265–273.

    PubMed  CAS  Google Scholar 

  • Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3(1): Article 3.

    Google Scholar 

  • Smyth, G. K. (2005). Limma: linear models for microarray data. In: R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, and W. Huber (Eds.), Bioinformatics and Computational Biology Solutions using R and Bioconductor, Springer, New York, pages 397–420.

    Google Scholar 

  • Smyth, G. K., Michaud, J. and Scott, H. (2005). The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21: 2067–2075.

    PubMed  CAS  Google Scholar 

  • Soltis, P.S., Endress, P.K., Chase, M.W. and Soltis, D.E. (2005) Phylogeny & Evolution of Angiosperms. Sinauer Associates, Inc.: Sunderland, p. 190.

    Google Scholar 

  • Somerville, C. (2006) Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22: 53–78.

    PubMed  CAS  Google Scholar 

  • Stephens, S.G. (1970) The botanical identification of archaeological cotton. Amer. Antiguity 35 (3): 368–373.

    Google Scholar 

  • Stone, B. (2001) Cellulose: Structure and distribution, in Encyclopedia of Life Sciences, Nature Publishing Group, pp. 1–9.

    Google Scholar 

  • Szyjanowicz, P.M.J., McKinnon, I., Taylor, N.G., Gardiner, J., Jarvis, M.C. and Turner, S.R. (2004) The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 37: 730–740.

    PubMed  CAS  Google Scholar 

  • Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. and Turner, S. R. (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis, Proc. Natl. Acad. Sci. USA 100: 1450–1455.

    PubMed  CAS  Google Scholar 

  • Timpa, J.D. (1991) Application of universal calibration in gel permeation chromatography for molecular weight determination of plant cell wall polymers: Cotton fiber. J. Agric. Food Chem. 39: 270–275.

    CAS  Google Scholar 

  • Timpa, J.D. and Triplett, B.A. (1993) Analysis of cell-wall polymers during cotton fiber development. Planta 189: 101–108.

    CAS  Google Scholar 

  • Timpa, J.D. and Ramey, H.H. (1989) Molecular characterization of three cotton varieties. Text. Res. J. 59: 661–664.

    CAS  Google Scholar 

  • Timpa, J.D. and Ramey, H.H. (1994) Relationship between cotton fiber strength and cellulose molecular weight distribution: HVI calibration standards. Text. Res. J. 64: 557–562.

    CAS  Google Scholar 

  • Truernit, E., Siemering, K.R., Hodge, S., Vojislava, G. and Haseloff, J. (2006) A map of KNAT gene expression in the Arabidopsis root. Plant Mol. Biol. 60: 1–20.

    PubMed  CAS  Google Scholar 

  • Tu, L.-L., Zhang, X.-L., Liang, S.-G., Liu, D.-Q., Zhu, L.-F., Zeng, F.-C., Liu, D.-Q., Zhu, L.-F., Zeng, F.-C., Nie, Y.-C., Guo, X.-P., Deng, F.-L., Tan, J.-F. and Xu, L. (2007) Gene expression analysis of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep DOI 10.1007/s00299-007-0337-4.

    Google Scholar 

  • Ubeda-Tomas, S., Edvardsson, E., Eland, C., Singh, S.K., Zadik, D., Aspeborg, H., Gorzsas, A., Teeri, T.T., Sundberg, B., Persson, P., Bennett, M. and Marchant, A. (2007) Genomic-assisted identification of genes involved in secondary growth in Arabidopsis utilizing transcript profiling of poplar wood-forming tissues. Physiol. Plant. 129: 415–428.

    CAS  Google Scholar 

  • Udall, J.A., Swanson, J.M., Haller, K., Rapp, R.A., Sparks, M.E., Hatfield, J., Yu, Y., Wu, Y., Dowd, C., Arpat, A.B., Sickler, B.A., Wilkins, T.A., Guo, J.Y., Chen, X.Y., Scheffler, J., Talierco, E., Turley, R., McFadden, H., Payton, P., Allen, R., Zhang, D., Haigler, C., Wilkerson, C., Suo, J., Schulze, S.R., Pierce, M.L., Essenberg, M., Kim, H., Llewellyn, D.J., Dennis, E.S., Kudrna, D., Wing, R., Paterson, A.H., Soderlund, C. and Wendel, J.F. (2006) A global assembly of cotton ESTs. Gen. Res. 16: 441–50.

    Google Scholar 

  • Wang, J., Howles, P.A., Cork, A.H., Birch, R.J. and Williamson, R.E. (2006) Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls. Plant Physiol. 142: 685–695.

    PubMed  CAS  Google Scholar 

  • Wendel, J.F. and Cronn, R.C. (2002) Polyploidy and evolutionary history of cotton. Adv. Agron. 78: 139–186.

    Google Scholar 

  • Whittaker, D.J. and Triplett, B.A. (1999) Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiol. 121: 181–188.

    PubMed  CAS  Google Scholar 

  • Willison, J.H.M. and Brown, R.M. (1977) An examination of the developing cotton fiber: wall and plasmalemma. Protoplasma 92: 21–41.

    Google Scholar 

  • Wu, Y.-T. and Liu, J.-Y. (2005) Molecular cloning and characterization of a cotton glucuronosyltransferase gene. J. Plant Physiol. 162: 573–582.

    PubMed  CAS  Google Scholar 

  • Yatsu, L.Y. (1983) Morphological and physical effects of colchicine treatment on cotton (Gossypium hirsutum L.) fibers. Text. Res. J. 53: 515–519.

    CAS  Google Scholar 

  • Yuen, C.Y.L., Sedbrook, J.C., Perrin, R.M., Carroll, K.L. and Masson, P.H. (2005) Loss-of-function mutations of ROOT HAIR DEFECTIVE3 suppress root waving, skewing, and epidermal cell file rotation in Arabidopsis. Plant Physiol. 138: 701–714.

    PubMed  CAS  Google Scholar 

  • Zhang, D., Choi, D.W., Wanamaker, S., Fenton, R.D., Chin, A., Malatrasi, M., Turuspekov, Y., Walia, H., Akhunov, E.D., Kianian, P., Otto, C., Simons, K., Deal, K.R., Echenique, V., Stamova, B., Ross, K., Butler, G.E., Strader, L., Verhey, S.D., Johnson, R., Altenbach, S., Kothari, K., Tanaka, C., Shah, M.M., Laudencia-Chingcuanco, D., Han, P., Miller, R.E., Crossman, C.C., Chao, S., Lazo, G.R., Klueva, N., Gustafson, J.P., Kianian, S.F., Dubcovsky, J., Walker-Simmons, M.K., Gill, K.S., Dvorak, J., Anderson, O.D., Sorrells, M.E., McGuire, P.E., Qualset, C.O., Nguyen, H.T. and Close, T.J. (2004a) Construction and evaluation of cDNA libraries for large-scale expressed sequence tag sequencing in wheat (Triticum aestivum L.). Genetics 168: 595–608.

    Google Scholar 

  • Zhang, D., Hrmova, M., Wan, C.-H., Wu. C., Balzen, J., Cai, W., Wang, J., Densmore, L.D., Fincher, G.B., Zhang, H. and Haigler, C.H. (2004b) Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol. Biol. 54:353–372.

    Google Scholar 

  • Zhong R., Kayes, S. J., Schroeder, B. P. and Ye, Z.H. (2002) Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14: 165–179.

    PubMed  CAS  Google Scholar 

  • Zhong, R., Richardson, E.A. and Ye, Z.-H. (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225: 1603–1611.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Cotton Incorporated, Cary, NC supported the microarray and bioinformatics analyses, with additional support from North Carolina State University. Special thanks go to Curtis Wilkerson and Jeff Landgraf, Research Technology Support Facility/Bioinformatics at Michigan State University, for carrying out the microarray analysis. NSF Plant Genome Research Program grants, #DBI-0211797, R98RA1829, and #DBI-0110173, supported making and sequencing the G.h.fbr-sw SSH library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candace H. Haigler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haigler, C.H., Singh, B., Wang, G., Zhang, D. (2009). Genomics of Cotton Fiber Secondary Wall Deposition and Cellulose Biogenesis. In: Paterson, A.H. (eds) Genetics and Genomics of Cotton. Plant Genetics and Genomics: Crops and Models, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70810-2_16

Download citation

Publish with us

Policies and ethics