Skip to main content
Log in

The repression of oncoprotein SET by the tumor suppressor p53 reveals a p53-SET-PP2A feedback loop for cancer therapy

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The oncoprotein SET is frequently overexpressed in many types of tumors and contributes to malignant initiation and progression through multiple mechanisms, including the hijacking of the tumor suppressors p53 and PP2A. Targeting aberrant SET represents a promising strategy for cancer intervention. However, the mechanism by which endogenous SET is regulated in cancer cells remains largely unknown. Here, we identified the tumor suppressor p53 as a key regulator that transcriptionally repressed the expression of SET in both normal and cancer cells. In addition, p53 stimulated PP2A phosphatase activity via p53-mediated transcriptional repression of SET, whereby SET-mediated inhibition of PP2A was alleviated. Moreover, targeting the interaction between SET and PP2A catalytic subunit (PP2Ac) with FTY720 enhanced stress-induced p53 activation via PP2A-mediated dephosphorylation of p53 on threonine 55 (Thr55). Therefore, our findings uncovered a previously unknown p53-SET-PP2A regulatory feedback loop. To functionally potentiate this feedback loop, we designed a combined therapeutic strategy by simultaneously administrating a p53 activator and SET antagonist in cancer cells and observed a dramatic synergistic effect on tumor suppression. Our study reveals mechanistic insight into the regulation of the oncoprotein SET and raises a potential strategy for cancer therapy by stimulating the p53-SET-PP2A feedback loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akdemir, K.C., Jain, A.K., Allton, K., Aronow, B., Xu, X., Cooney, A.J., Li, W., and Barton, M.C. (2014). Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells. Nucleic Acids Res 42, 205–223.

    Article  CAS  Google Scholar 

  • Bayarkhangai, B., Noureldin, S., Yu, L., Zhao, N., Gu, Y., Xu, H., and Guo, C. (2018). A comprehensive and perspective view of oncoprotein SET in cancer. Cancer Med 7, 3084–3094.

    Article  Google Scholar 

  • Bieging, K.T., Mello, S.S., and Attardi, L.D. (2014). Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14, 359–370.

    Article  CAS  Google Scholar 

  • Bykov, V.J.N., Eriksson, S.E., Bianchi, J., and Wiman, K.G. (2018). Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer 18, 89–102.

    Article  CAS  Google Scholar 

  • Cristóbal, I., Garcia-Orti, L., Cirauqui, C., Cortes-Lavaud, X., García-Sánchez, M.A., Calasanz, M.J., and Odero, M.D. (2012). Overexpression of SET is a recurrent event associated with poor outcome and contributes to protein phosphatase 2A inhibition in acute myeloid leukemia. Haematologica 97, 543–550.

    Article  Google Scholar 

  • Dacol, E.C., Wang, S., Chen, Y., and Lepique, A.P. (2021). The interaction of SET and protein phosphatase 2A as target for cancer therapy. Biochim Biophys Acta (BBA)-Rev Cancer 1876, 188578.

    Article  CAS  Google Scholar 

  • Fan, Z., Beresford, P.J., Oh, D.Y., Zhang, D., and Lieberman, J. (2003). Tumor suppressor NM23-H1 is a Granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112, 659–672.

    Article  CAS  Google Scholar 

  • Fowle, H., Zhao, Z., and Grana, X. (2019). PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 144, 55–93.

    Article  Google Scholar 

  • Ge, Y., Wu, S., Zhang, Z., Li, X., Li, F., Yan, S., Liu, H., Huang, J., and Zhao, Y. (2019). Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting alt cancers. Protein Cell 10, 808–824.

    Article  CAS  Google Scholar 

  • Hafner, A., Bulyk, M.L., Jambhekar, A., and Lahav, G. (2019). The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 20, 199–210.

    Article  CAS  Google Scholar 

  • Hung, M.H., Chen, Y.L., Chu, P.Y., Shih, C.T., Yu, H.C., Tai, W.T., Shiau, C.W., and Chen, K.F. (2016). Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential. Oncogene 35, 4891–4902.

    Article  CAS  Google Scholar 

  • Janghorban, M., Farrell, A.S., Allen-Petersen, B.L., Pelz, C., Daniel, C.J., Oddo, J., Langer, E.M., Christensen, D.J., and Sears, R.C. (2014). Targeting c-MYC by antagonizing PP2A inhibitors in breast cancer. Proc Natl Acad Sci USA 111, 9157–9162.

    Article  CAS  Google Scholar 

  • Kastenhuber, E.R., and Lowe, S.W. (2017). Putting p53 in context. Cell 170, 1062–1078.

    Article  CAS  Google Scholar 

  • Kim, J.Y., Lee, K.S., Seol, J.E., Yu, K., Chakravarti, D., and Seo, S.B. (2012). Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity. Nucleic Acids Res 40, 75–87.

    Article  CAS  Google Scholar 

  • Kon, N., Wang, D., and Gu, W. (2019). Loss of SET reveals both the p53-dependent and the p53-independent functions in vivo. Cell Death Dis 10, 237.

    Article  Google Scholar 

  • Li, H.H., Cai, X., Shouse, G.P., Piluso, L.G., and Liu, X. (2007). A specific PP2A regulatory subunit, B56γ, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO J 26, 402–411.

    Article  CAS  Google Scholar 

  • Li, M., Makkinje, A., and Damuni, Z. (1996). The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 271, 11059–11062.

    Article  CAS  Google Scholar 

  • Liu, H., Gu, Y., Wang, H., Yin, J., Zheng, G., Zhang, Z., Lu, M., Wang, C., and He, Z. (2015). Overexpression of PP2A inhibitor SET oncoprotein is associated with tumor progression and poor prognosis in human non-small cell lung cancer. Oncotarget 6, 14913–14925.

    Article  Google Scholar 

  • Liu, X., Zhang, L., Thu, P.M., Min, W., Yang, P., Li, J., Li, P., and Xu, X. (2021). Sodium cantharidinate, a novel anti-pancreatic cancer agent that activates functional p53. Sci China Life Sci 64, 1295–1310.

    Article  CAS  Google Scholar 

  • Mazhar, S., Taylor, S.E., Sangodkar, J., and Narla, G. (2019). Targeting PP2A in cancer: combination therapies. Biochim Biophys Acta (BBA)-Mol Cell Res 1866, 51–63.

    Article  CAS  Google Scholar 

  • Mumby, M. (2007). PP2A: Unveiling a reluctant tumor suppressor. Cell 130, 21–24.

    Article  CAS  Google Scholar 

  • Muto, S., Senda, M., Akai, Y., Sato, L., Suzuki, T., Nagai, R., Senda, T., and Horikoshi, M. (2007). Relationship between the structure of SET/TAF-Iβ/INHAT and its histone chaperone activity. Proc Natl Acad Sci USA 104, 428 5–4290.

    Google Scholar 

  • Nagata, K., Saito, S., Okuwaki, M., Kawase, H., Furuya, A., Kusano, A., Hanai, N., Okuda, A., and Kikuchi, A. (1998). Cellular localization and expression of template-activating factor I in different cell types. Exp Cell Res 240, 274–281.

    Article  CAS  Google Scholar 

  • Pelletier, D., and Hafler, D.A. (2012). Fingolimod for multiple sclerosis. N Engl J Med 366, 339–347.

    Article  CAS  Google Scholar 

  • Saddoughi, S.A., Gencer, S., Peterson, Y.K., Ward, K.E., Mukhopadhyay, A., Oaks, J., Bielawski, J., Szulc, Z.M., Thomas, R.J., Selvam, S.P., et al. (2013). Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol Med 5, 105–121.

    Article  CAS  Google Scholar 

  • Saito, S., Miyaji-Yamaguchi, M., Shimoyama, T., and Nagata, K. (1999). Functional domains of template-activating factor-I as a protein phosphatase 2A inhibitor. Biochem Biophysl Res Commun 259, 471–475.

    Article  CAS  Google Scholar 

  • Shouse, G.P., Nobumori, Y., Panowicz, M.J., and Liu, X. (2011). ATM-mediated phosphorylation activates the tumor-suppressive function of B56γ-PP2A. Oncogene 30, 3755–3765.

    Article  CAS  Google Scholar 

  • Sobral, L.M., Sousa, L.O., Coletta, R.D., Cabral, H., Greene, L.J., Tajara, E.H., Gutkind, J.S., Curti, C., and Leopoldino, A.M. (2014). Stable SET knockdown in head and neck squamous cell carcinoma promotes cell invasion and the mesenchymal-like phenotype in vitro, as well as necrosis, cisplatin sensitivity and lymph node metastasis in xenograft tumor models. Mol Cancer 13, 32.

    Article  Google Scholar 

  • Switzer, C.H., Cheng, R.Y.S., Vitek, T.M., Christensen, D.J., Wink, D.A., and Vitek, M.P. (2011). Targeting SET/I2PP2A oncoprotein functions as a multi-pathway strategy for cancer therapy. Oncogene 30, 2504–2513.

    Article  CAS  Google Scholar 

  • ten Klooster, J.P., Leeuwen, I., Scheres, N., Anthony, E.C., and Hordijk, P. L. (2007). Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene set. EMBO J 26, 336–345.

    Article  CAS  Google Scholar 

  • Wang, D., Kon, N., Lasso, G., Jiang, L., Leng, W., Zhu, W.G., Qin, J., Honig, B., and Gu, W. (2016). Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature 538, 118–122.

    Article  CAS  Google Scholar 

  • Wang, D., Kon, N., Tavana, O., and Gu, W. (2017). The “readers” of unacetylated p53 represent a new class of acidic domain proteins. Nucleus 8, 360–369.

    Article  CAS  Google Scholar 

  • Yu, G., Yan, T., Feng, Y., Liu, X., Xia, Y., Luo, H., Wang, J.Z., and Wang, X. (2013). Ser9 phosphorylation causes cytoplasmic detention of I2PP2A/SET in alzheimer disease. NeuroBiol Aging 34, 1748–1758.

    Article  CAS  Google Scholar 

  • Yuan, X., Zhang, T., Zheng, X., Zhang, Y., Feng, T., Liu, P., Sun, Z., Qin, S., Liu, X., Zhang, L., et al. (2017). Overexpression of set oncoprotein is associated with tumor progression and poor prognosis in human gastric cancer. Oncol Rep 38, 1733–1741.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Municipal Natural Science Foundation (7192126), the National Natural Science Foundation of China (81872311, 82073132, 82122054, and 81720108027), the National Key R&D Program of China (2019YFC1005200, and 2019YFC1005201), and CAMS Innovation Fund for Medical Sciences (2021-I2M-1-016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Guo Zhu or Donglai Wang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Xu, W., Liu, Y. et al. The repression of oncoprotein SET by the tumor suppressor p53 reveals a p53-SET-PP2A feedback loop for cancer therapy. Sci. China Life Sci. 66, 81–93 (2023). https://doi.org/10.1007/s11427-021-2123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2123-8

Keywords

Navigation