Skip to main content

Advertisement

Log in

The immunogenicity of a novel cytotoxic T lymphocyte epitope from tumor antigen PL2L60 could be enhanced by 4-chlorophenylalanine substitution at position 1

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

PIWIL2, a member of PIWI/AGO family, is expressed in germline stem cells and precancerous stem cells, but not in adult somatic cells. PIWIL2 plays an important role in tumor development. It is considered as a cancer–testis antigen (CT80). It has been reported that the spliced fragment of PIWIL2, PL2L60, was widely expressed in cancer cell lines. In this study, HLA-A2-restricted epitopes from PL2L60 were predicted by online tools. To improve the activity of the native epitope, a candidate peptide P281 with potent binding affinity was chosen to investigate the modification strategy. A series of aromatic amino acids were introduced to substitute the first residue of P281. Then, we tested the binding affinity and stability of the peptide analogs and their ability to elicit specific immune responses both in vitro and in vivo. Our results indicated that the cytotoxic T lymphocytes (CTLs) induced by [4-Cl-Phe1]P281 could elicit more potent activities than that of P281 and other analogs. The CTLs induced by this analog could lyze target cells in HLA-A2-restricted and antigen-specific manners. [4-Cl-Phe1]P281 also showed the best resistance against degradation in human serum. In conclusion, the introduction of the unnatural amino acid, 4-Cl-Phe, into the first position could enhance the activity of the native epitope to induce cytotoxic T lymphocytes. It might be a good strategy to modify other promising native epitopes. The novel epitopes identified in this study could be used as novel candidates to the immunotherapy of HLA-A2 positive patients with tumors expressing PL2L60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kessler JH, Melief CJ (2007) Identification of T-cell epitopes for cancer immunotherapy. Leukemia 21:1859–1874

    Article  PubMed  CAS  Google Scholar 

  2. Uenaka A, Hirano Y, Hata H et al (2003) Cryptic CTL epitope on a murine sarcoma Meth A generated by exon extension as a novel mechanism. J Immunol 170:4862–4868

    PubMed  CAS  Google Scholar 

  3. Shen H, Shao HW, Chen XH et al (2012) Identification of a novel HLA-A2-restricted mutated Survivin epitope and induction of specific anti-HCC CTLs that could effectively cross-recognize wild-type Survivin antigen. Cancer Immunol Immunother. doi:10.1007/s00262-012-1323-4

    Google Scholar 

  4. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308

    Article  PubMed  CAS  Google Scholar 

  5. Blattman JN, Greenberg PD (2004) Cancer immunotherapy: a treatment for the masses. Science 305:200–205. doi:10.1126/science.1100369305/5681/200

    Article  PubMed  CAS  Google Scholar 

  6. Bredenbeck A, Losch FO, Sharav T, Eichler-Mertens M, Filter M, Givehchi A, Sterry W, Wrede P, Walden P (2005) Identification of noncanonical melanoma-associated T cell epitopes for cancer immunotherapy. J Immunol 174:6716–6724

    PubMed  CAS  Google Scholar 

  7. Ye Y, Yin DT, Chen L et al (2010) Identification of Piwil2-like (PL2L) proteins that promote tumorigenesis. PLoS One 5:e13406. doi:10.1371/journal.pone.0013406

    Article  PubMed  Google Scholar 

  8. Lazoura E, Apostolopoulos V (2005) Rational Peptide-based vaccine design for cancer immunotherapeutic applications. Curr Med Chem 12:629–639

    Article  PubMed  CAS  Google Scholar 

  9. Cole DK, Edwards ES, Wynn KK et al (2010) Modification of MHC anchor residues generates heteroclitic peptides that alter TCR binding and T cell recognition. J Immunol 185:2600–2610. doi:10.4049/jimmunol.1000629

    Article  PubMed  CAS  Google Scholar 

  10. Tirosh B, el-Shami K, Vaisman N, Carmon L, Bar-Haim E, Vadai E, Feldman M, Fridkin M, Eisenbach L (1999) Immunogenicity of H-2 Kb-low affinity, high affinity, and covalently-bound peptides in anti-tumor vaccination. Immunol Lett 70:21–28

    Article  PubMed  CAS  Google Scholar 

  11. Tu SH, Huang HI, Lin SI et al (2012) A novel HLA-A2-restricted CTL epitope of tumor-associated antigen L6 can inhibit tumor growth in vivo. J Immunother 35:235–244. doi:10.1097/CJI.0b013e318248f2ae

    Article  PubMed  CAS  Google Scholar 

  12. Valmori D, Fonteneau JF, Lizana CM et al (1998) Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol 160:1750–1758

    PubMed  CAS  Google Scholar 

  13. van Stipdonk MJ, Badia-Martinez D, Sluijter M, Offringa R, van Hall T, Achour A (2009) Design of agonistic altered peptides for the robust induction of CTL directed towards H-2Db in complex with the melanoma-associated epitope gp100. Cancer Res 69:7784–7792. doi:10.1158/0008-5472.CAN-09-1724

    Article  PubMed  Google Scholar 

  14. Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A (1993) Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 74:929–937

    Article  PubMed  CAS  Google Scholar 

  15. Tourdot S, Scardino A, Saloustrou E, Gross DA, Pascolo S, Cordopatis P, Lemonnier FA, Kosmatopoulos K (2000) A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol 30:3411–3421. doi:10.1002/1521-4141(2000012)30:12<3411:AID-IMMU3411>3.0.CO;2-R

    Article  PubMed  CAS  Google Scholar 

  16. Gold JS, Ferrone CR, Guevara-Patino JA, Hawkins WG, Dyall R, Engelhorn ME, Wolchok JD, Lewis JJ, Houghton AN (2003) A single heteroclitic epitope determines cancer immunity after xenogeneic DNA immunization against a tumor differentiation antigen. J Immunol 170:5188–5194

    PubMed  CAS  Google Scholar 

  17. Fischer PM (2003) The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr Protein Pept Sci 4:339–356

    Article  PubMed  CAS  Google Scholar 

  18. Gao YF, Sun ZQ, Qi F, Qi YM, Zhai MX, Lou HP, Chen LX, Li YX, Wang XY (2009) Identification of a new broad-spectrum CD8 + T cell epitope from over-expressed antigen COX-2 in esophageal carcinoma. Cancer Lett 284:55–61. doi:10.1016/j.canlet.2009.04.009

    Article  PubMed  CAS  Google Scholar 

  19. Gritzapis AD, Voutsas IF, Lekka E, Tsavaris N, Missitzis I, Sotiropoulou P, Perez S, Papamichail M, Baxevanis CN (2008) Identification of a novel immunogenic HLA-A*0201-binding epitope of HER-2/neu with potent antitumor properties. J Immunol 181:146–154

    PubMed  CAS  Google Scholar 

  20. Chen F, Zhai MX, Zhu YH, Qi YM, Zhai WJ, Gao YF (2012) In vitro and in vivo identification of a novel cytotoxic T lymphocyte epitope from Rv3425 of Mycobacterium tuberculosis. Microbiol Immunol 56:548–553. doi:10.1111/j.1348-0421.2012.00470.x

    Article  PubMed  CAS  Google Scholar 

  21. Hui X, Chen H, Zhang S, Ma X, Wang X, Huang B (2011) Antitumor activities of recombinant human interferon (IFN)-lambda1 in vitro and in xenograft models in vivo for colon cancer. Cancer Lett 311:141–151. doi:10.1016/j.canlet.2011.07.004

    Article  PubMed  CAS  Google Scholar 

  22. Zhu B, Chen Z, Cheng X et al (2003) Identification of HLA-A*0201-restricted cytotoxic T lymphocyte epitope from TRAG-3 antigen. Clin Cancer Res 9:1850–1857

    PubMed  CAS  Google Scholar 

  23. Wang RN, Wang YB, Geng JW, Guo DH, Liu F, Chen HY, Zhang HY, Cui BA, Wei ZY (2012) Enhancing immune responses to inactivated porcine parvovirus oil emulsion vaccine by co-inoculating porcine transfer factor in mice. Vaccine 30:5246–5252. doi:10.1016/j.vaccine.2012.05.077

    Article  PubMed  CAS  Google Scholar 

  24. Ding FX, Wang F, Lu YM, Li K, Wang KH, He XW, Sun SH (2009) Multiepitope peptide-loaded virus-like particles as a vaccine against hepatitis B virus-related hepatocellular carcinoma. Hepatology 49:1492–1502. doi:10.1002/hep.22816

    Article  PubMed  CAS  Google Scholar 

  25. Liu W, Zhai M, Wu Z, Qi Y, Wu Y, Dai C, Sun M, Li L, Gao Y (2011) Identification of a novel HLA-A2-restricted cytotoxic T lymphocyte epitope from cancer-testis antigen PLAC1 in breast cancer. Amino Acids. doi:10.1007/s00726-011-0966-3

    Google Scholar 

  26. Zhu YH, Gao YF, Chen F, Liu W, Zhai MX, Zhai WJ, Qi YM, Ye Y (2011) Identification of novel T cell epitopes from efflux pumps of Mycobacterium tuberculosis. Immunol Lett 140:68–73. doi:10.1016/j.imlet.2011.06.009

    Article  PubMed  CAS  Google Scholar 

  27. Tugyi R, Uray K, Ivan D, Fellinger E, Perkins A, Hudecz F (2005) Partial D-amino acid substitution: improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci USA 102:413–418. doi:10.1073/pnas.0407677102

    Article  PubMed  CAS  Google Scholar 

  28. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  PubMed  CAS  Google Scholar 

  29. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175

    PubMed  CAS  Google Scholar 

  30. Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–1017

    Article  PubMed  CAS  Google Scholar 

  31. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8:424

    Article  PubMed  Google Scholar 

  32. Schalich J, Vytvytska O, Zauner W, Fischer MB, Buschle M, Aichinger G, Klade CS (2008) Analysis of the human cytomegalovirus pp65-directed T-cell response in healthy HLA-A2-positive individuals. Biol Chem 389:551–559

    Article  PubMed  CAS  Google Scholar 

  33. Wu ZY, Gao YF, Wu YH, Liu W, Sun M, Zhai MX, Qi YM, Ye Y (2011) Identification of a novel CD8 + T cell epitope derived from cancer-testis antigen MAGE-4 in oesophageal carcinoma. Scand J Immunol 74:561–567. doi:10.1111/j.1365-3083.2011.02606.x

    Article  PubMed  CAS  Google Scholar 

  34. Traversari C, van der Bruggen P, Luescher IF, Lurquin C, Chomez P, Van Pel A, De Plaen E, Amar-Costesec A, Boon T (1992) A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 176:1453–1457

    Article  PubMed  CAS  Google Scholar 

  35. Goonetilleke N, Moore S, Dally L et al (2006) Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8 + T-cell epitopes. J Virol 80:4717–4728. doi:10.1128/JVI.80.10.4717- 4728.2006

    Article  PubMed  CAS  Google Scholar 

  36. Salmon-Ceron D, Durier C, Desaint C et al (2010) Immunogenicity and safety of an HIV-1 lipopeptide vaccine in healthy adults: a phase 2 placebo-controlled ANRS trial. AIDS 24:2211–2223. doi:10.1097/QAD.0b013e32833ce566

    Article  PubMed  CAS  Google Scholar 

  37. Croft NP, Purcell AW (2011) Peptidomimetics: modifying peptides in the pursuit of better vaccines. Expert Rev Vaccines 10:211–226. doi:10.1586/erv.10.161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81373228, 81172893) and the National Science and Technology Major Projects of New Drugs (2012ZX09103301-023).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-feng Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Rr., Liu, J., Zou, Z. et al. The immunogenicity of a novel cytotoxic T lymphocyte epitope from tumor antigen PL2L60 could be enhanced by 4-chlorophenylalanine substitution at position 1. Cancer Immunol Immunother 62, 1723–1732 (2013). https://doi.org/10.1007/s00262-013-1478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1478-7

Keywords

Navigation