Skip to main content
Log in

Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Lack of appropriate methods for delivery of genome-editing reagents is a major barrier to CRISPR/Cas-mediated genome editing in plants. Agrobacterium-mediated genetic transformation (AMGT) is the preferred method of CRISPR/Cas reagent delivery, and researchers have recently made great improvements to this process. In this article, we review the development of AMGT and AMGT-based delivery of CRISPR/Cas reagents. We give an overview of the development of AMGT vectors including binary vector, superbinary vector, dual binary vector, and ternary vector systems. We also review the progress in Agrobacterium genomics and Agrobacterium genetic engineering for optimal strains. We focus in particular on the ternary vector system and the resources we developed. In summary, it is our opinion that Agrobacterium-mediated CRISPR/Cas genome editing in plants is entering an era of ternary vector systems, which are often integrated with morphogenic regulators. The new vectors described in this article are available from Addgene and/or MolecularCloud for sharing with academic investigators for noncommercial research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A.E., Brutnell, T.P., Citovsky, V., Conrad, L.J., Gelvin, S.B., Jackson, D.P., Kausch, A.P., et al. (2016). Advancing crop transformation in the era of genome editing. Plant Cell 28, tpc.00196.2016.

    Google Scholar 

  • Anand, A., Bass, S.H., Wu, E., Wang, N., McBride, K.E., Annaluru, N., Miller, M., Hua, M., and Jones, T.J. (2018). An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol 97, 187–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boutilier, K., Offringa, R., Sharma, V.K., Kieft, H., Ouellet, T., Zhang, L., Hattori, J., Liu, C.M., van Lammeren, A.A.M., Miki, B.L.A., et al. (2002). Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14, 1737–1749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Che, P., Anand, A., Wu, E., Sander, J.D., Simon, M.K., Zhu, W., Sigmund, A.L., Zastrow-Hayes, G., Miller, M., Liu, D., et al. (2018). Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J 16, 1388–1395.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, K., Wang, Y., Zhang, R., Zhang, H., and Gao, C. (2019). CRISPR/ Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70, 667–697.

    CAS  PubMed  Google Scholar 

  • Florez, S.L., Erwin, R.L., Maximova, S.N., Guiltinan, M.J., and Curtis, W. R. (2015). Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 15, 121.

    PubMed  PubMed Central  Google Scholar 

  • Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B.S., Cao, Y., Askenazi, M., Halling, C., et al. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323–2328.

    CAS  PubMed  Google Scholar 

  • Gordon, J.E., and Christie, P.J. (2014). The Agrobacterium Ti plasmids. Microbiol Spectr 2, 0010–2013.

    Google Scholar 

  • Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25, 989–994.

    CAS  PubMed  Google Scholar 

  • Hamilton, C.M. (1997). A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200, 107–116.

    CAS  PubMed  Google Scholar 

  • Hellens, R., Mullineaux, P., and Klee, H. (2000a). Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5, 446–451.

    CAS  PubMed  Google Scholar 

  • Hellens, R.P., Edwards, E.A., Leyland, N.R., Bean, S., and Mullineaux, P. M. (2000b). pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42, 819–832.

    CAS  PubMed  Google Scholar 

  • Henkel, C.V., den Dulk-Ras, A., Zhang, X., and Hooykaas, P.J.J. (2014). Genome sequence of the octopine-type Agrobacterium tumefaciens strain Ach5. Genome Announc 2, https://doi.org/10.1128/genomeA.00225-14.

    Google Scholar 

  • Hood, E.E., Gelvin, S.B., Melchers, L.S., and Hoekema, A. (1993). New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2, 208–218.

    CAS  Google Scholar 

  • Horstman, A., Li, M., Heidmann, I., Weemen, M., Chen, B., Muino, J.M., Angenent, G.C., and Boutilier, K. (2017). The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol 175, 848–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y.Y., Cho, S.T., Lo, W.S., Wang, Y.C., Lai, E.M., and Kuo, C.H. (2015). Complete Genome Sequence of Agrobacterium tumefaciens Ach5. Genome Announc 3.

    Google Scholar 

  • Ji, X., Wang, D., and Gao, C. (2019). CRISPR editing-mediated antiviral immunity: a versatile source of resistance to combat plant virus infections. Sci China Life Sci 62, 1246–1249.

    PubMed  Google Scholar 

  • Khanday, I., Skinner, D., Yang, B., Mercier, R., and Sundaresan, V. (2019). A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95.

    CAS  PubMed  Google Scholar 

  • Kitagawa, M., and Jackson, D. (2019). Control of meristem size. Annu Rev Plant Biol 70, 269–291.

    CAS  PubMed  Google Scholar 

  • Komari, T. (1990). Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9, 303–306.

    CAS  PubMed  Google Scholar 

  • Komori, T., Imayama, T., Kato, N., Ishida, Y., Ueki, J., and Komari, T. (2007). Current status of binary vectors and superbinary vectors. Plant Physiol 145, 1155–1160.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, L.Y., and Gelvin, S.B. (2008). T-DNA binary vectors and systems. Plant Physiol 146, 325–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G., Liu, Y.G., and Chen, Y. (2019). Genome-editing technologies: the gap between application and policy. Sci China Life Sci 62, 1534–1538.

    PubMed  Google Scholar 

  • Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., and Wang, K. (2019). Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci 62, 1–7.

    PubMed  Google Scholar 

  • Lowe, K., La Rota, M., Hoerster, G., Hastings, C., Wang, N., Chamberlin, M., Wu, E., Jones, T., and Gordon-Kamm, W. (2018). Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol Plant 54, 240–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., et al. (2016). Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Y., Miotk, A., Šutiković, Z., Ermakova, O., Wenzl, C., Medzihradszky, A., Gaillochet, C., Forner, J., Utan, G., Brackmann, K., et al. (2019). WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis. Nat Commun 10, 5093.

    PubMed  PubMed Central  Google Scholar 

  • Maher, M.F., Nasti, R.A., Vollbrecht, M., Starker, C.G., Clark, M.D., and Voytas, D.F. (2020). Plant gene editing through de novo induction of meristems. Nat Biotechnol 38, 84–89.

    CAS  PubMed  Google Scholar 

  • Meng, X., Hu, X., Liu, Q., Song, X., Gao, C., Li, J., and Wang, K. (2018). Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Sci China Life Sci 61, 122–125.

    CAS  PubMed  Google Scholar 

  • Nester, E.W. (2015). Agrobacterium: nature’s genetic engineer. Front Plant Sci 5, 730.

    PubMed  PubMed Central  Google Scholar 

  • Nonaka, S., Someya, T., Kadota, Y., Nakamura, K., and Ezura, H. (2019). Super-Agrobacterium ver. 4: improving the transformation frequencies and genetic engineering possibilities for crop plants. Front Plant Sci 10, 1204.

    PubMed  PubMed Central  Google Scholar 

  • Ran, Y., Liang, Z., and Gao, C. (2017). Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci 60, 490–505.

    CAS  PubMed  Google Scholar 

  • Shao, S., van Heusden, G.P.H., and Hooykaas, P.J.J. (2019). Complete sequence of succinamopine Ti-plasmid pTiEU6 reveals its evolutionary relatedness with nopaline-type Ti-plasmids. Genome Biol Evol 11, 2480–2491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, S., Zhang, X., van Heusden, G.P.H., and Hooykaas, P.J.J. (2018). Complete sequence of the tumor-inducing plasmid pTiChry5 from the hypervirulent Agrobacterium tumefaciens strain Chry5. Plasmid 96–97. 1–6

    Google Scholar 

  • Somssich, M., Je, B.I., Simon, R., and Jackson, D. (2016). CLAVATAWUSCHEL signaling in the shoot meristem. Development 143, 3238–3248.

    CAS  PubMed  Google Scholar 

  • Thole, V., Worland, B., Snape, J.W., and Vain, P. (2007). The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiol 145, 1211–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truskina, J., and Vernoux, T. (2018). The growth of a stable stationary structure: coordinating cell behavior and patterning at the shoot apical meristem. Curr Opin Plant Biol 41, 83–88.

    PubMed  Google Scholar 

  • van der Fits, L., Deakin, E.A., Hoge, J.H.C., and Memelink, J. (2000). The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43, 495–502.

    PubMed  Google Scholar 

  • Wood, D.W., Setubal, J.C., Kaul, R., Monks, D.E., Kitajima, J.P., Okura, V. K., Zhou, Y., Chen, L., Wood, G.E., Almeida, N.F., et al. (2001). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317–2323.

    CAS  PubMed  Google Scholar 

  • Xue, C., Zhang, H., Lin, Q., Fan, R., and Gao, C. (2018). Manipulating mRNA splicing by base editing in plants. Sci China Life Sci 61, 1293–1300.

    CAS  PubMed  Google Scholar 

  • Zhang, Q., Zhang, Y., Lu, M.H., Chai, Y.P., Jiang, Y.Y., Zhou, Y., Wang, X. C., and Chen, Q.J. (2019). A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiol 181, 1441–1448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J., Oger, P.M., Schrammeijer, B., Hooykaas, P.J.J., Farrand, S.K., and Winans, S.C. (2000). The bases of crown gall tumorigenesis. J Bacteriol 182, 3885–3895.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zupan, J., Muth, T.R., Draper, O., and Zambryski, P. (2000). The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23, 11–28.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Crop Breeding Fund (2016YFD0101804), the National Natural Science Foundation of China (31872678 and 31670371), and the National Transgenic Research Project (2016ZX08009002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Jun Chen.

Additional information

Compliance and ethicsThe author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, Q. & Chen, QJ. Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems. Sci. China Life Sci. 63, 1491–1498 (2020). https://doi.org/10.1007/s11427-020-1685-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1685-9

Keywords

Navigation