Skip to main content
Log in

Overexpression of the Rap2.4f transcriptional factor in Arabidopsis promotes leaf senescence

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Senescence is a complex and highly regulated process. Leaf senescence is influenced by endogenous developmental and external environmental signals. In this work, we found that expression of an Ap2/DREB-type transcription factor gene, Arabidopsis Rap2.4f (At4g28140), was upregulated by salt, mannitol, and dark treatments. Constitutively overexpressing Rap2.4f under the control of the CaMV 35S promoter led to an increased chlorophyll degradation rate and upregulation of many senescence-associated genes in the transgenic Arabidopsis lines. Our results show that Rap2.4f is a positive regulator of senescence, promoting both developmental and dark-induced leaf senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim P O, Woo H R, Nam H G. Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci, 2003, 8: 272–278, 1:CAS:528:DC%2BD3sXksF2hur0%3D, 10.1016/S1360-1385(03)00103-1, 12818661

    Article  PubMed  CAS  Google Scholar 

  2. Quirino B F, Noh Y S, Himelblau E, et al. Molecular aspects of leaf senescence. Trends Plant Sci, 2000, 5: 278–282, 1:STN:280:DC%2BD3cvgtlCgsA%3D%3D, 10.1016/S1360-1385(00)01655-1, 10871899

    Article  PubMed  CAS  Google Scholar 

  3. Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115–136, 1:CAS:528:DC%2BD2sXnsVahs70%3D, 10.1146/annurev.arplant.57.032905.105316, 17177638

    Article  PubMed  CAS  Google Scholar 

  4. Lin J F, Wu S H. Molecular events in senescing Arabidopsis leaves. Plant J, 2004, 39: 612–628, 1:CAS:528:DC%2BD2cXnslOms74%3D, 10.1111/j.1365-313X.2004.02160.x, 15272878

    Article  PubMed  CAS  Google Scholar 

  5. Buchanan-Wollaston V, Page T, Harrison E, et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J, 2005, 42: 567–585, 1:CAS:528:DC%2BD2MXkvVWqtL0%3D, 10.1111/j.1365-313X.2005.02399.x, 15860015

    Article  PubMed  CAS  Google Scholar 

  6. van der Graaff E, Schwacke R, Schneider A, et al. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol, 2006, 141: 776–792, 10.1104/pp.106.079293, 16603661

    Article  PubMed  PubMed Central  Google Scholar 

  7. Quirino B F, Normanly J, Amasino R M. Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol Biol, 1999, 40: 267–278, 1:CAS:528:DyaK1MXkvVygsLY%3D, 10.1023/A:1006199932265, 10412905

    Article  PubMed  CAS  Google Scholar 

  8. Weaver L M, Gan S, Quirino B, et al. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol, 1998, 37: 455–469, 1:CAS:528:DyaK1cXjtlOjurY%3D, 10.1023/A:1005934428906, 9617813

    Article  PubMed  CAS  Google Scholar 

  9. Feng J X, Liu D, Pan Y, et al. An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol, 2005, 59: 853–868, 1:CAS:528:DC%2BD2MXht1Cqt7jL, 10.1007/s11103-005-1511-0, 16307362

    Article  PubMed  CAS  Google Scholar 

  10. Gilmour S J, Zarka D G, Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16: 433–442, 1:CAS:528:DyaK1MXitVensg%3D%3D, 10.1046/j.1365-313x.1998.00310.x, 9881163

    Article  PubMed  CAS  Google Scholar 

  11. Gilmour S J, Sebolt A M, Salazar M P, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124: 1854–1865, 1:CAS:528:DC%2BD3MXitVWqsw%3D%3D, 10.1104/pp.124.4.1854, 11115899

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Novillo F, Alonso J M, Ecker J R, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 3985–3990, 1:CAS:528:DC%2BD2cXis1KnsrY%3D, 10.1073/pnas.0303029101, 15004278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Lim C J, Hwang J E, Chen H, et al. Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem Biophys Res Commun, 2007, 362: 431–436, 1:CAS:528:DC%2BD2sXpvFKmsrg%3D, 10.1016/j.bbrc.2007.08.007, 17716623

    Article  PubMed  CAS  Google Scholar 

  14. Sharabi-Schwager M, Lers A, Samach A, et al. Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot, 2010, 61: 261–273, 1:CAS:528:DC%2BD1MXhsFGgu7bK, 10.1093/jxb/erp300, 19854800

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Zhao L, Luo Q, Yang C, et al. A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta, 2008, 227: 1389–1399, 1:CAS:528:DC%2BD1cXks1Ght7c%3D, 10.1007/s00425-008-0711-7, 18297307

    Article  PubMed  CAS  Google Scholar 

  16. Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998–1009, 1:CAS:528:DC%2BD38XksVyquw%3D%3D, 10.1006/bbrc.2001.6299, 11798174

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi S, Seki M, Ishida J, et al. Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Mol Biol, 2004, 56: 29–55, 1:CAS:528:DC%2BD2cXhtFWqsbrI, 10.1007/s11103-004-2200-0, 15604727

    Article  PubMed  CAS  Google Scholar 

  18. Bechtold U, Richard O, Zamboni A, et al. Impact of chloroplastic- and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. J Exp Bot, 2008, 59: 121–133, 1:CAS:528:DC%2BD1cXjsVamtr0%3D, 10.1093/jxb/erm289, 18212028

    Article  PubMed  CAS  Google Scholar 

  19. Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743, 1:STN:280:DyaK1M7mvVagsQ%3D%3D, 10.1046/j.1365-313x.1998.00343.x, 10069079

    Article  PubMed  CAS  Google Scholar 

  20. Inskeep W P, Bloom P R. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol, 1985, 77: 483–485, 1:CAS:528:DyaL2MXht12jtrc%3D, 10.1104/pp.77.2.483, 16664080

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Guo Y, Gan S. Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol, 2005, 71: 83–112, 1:CAS:528:DC%2BD2sXmtFKmtrg%3D, 10.1016/S0070-2153(05)71003-6, 16344103

    Article  PubMed  CAS  Google Scholar 

  22. Lin R C, Park H J, Wang H Y. Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance. Mol Plant, 2008, 1: 42–57, 1:CAS:528:DC%2BD1cXksVGlurc%3D, 10.1093/mp/ssm004, 20031913

    Article  PubMed  CAS  Google Scholar 

  23. Shaikhali J, Heiber I, Seidel T, et al. The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes, MC Plant Biol. 2008, 8: 48, 10.1186/1471-2229-8-48

    Google Scholar 

  24. Huang B, Liu J Y. Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum. Biochim Biophys Acta, 2006, 1759: 263–269, 1:CAS:528:DC%2BD28XptVGntLc%3D, 16935362

    Article  PubMed  CAS  Google Scholar 

  25. He Y, Gan S. A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell, 2002, 14: 805–815, 1:CAS:528:DC%2BD38XjsFWksbk%3D, 10.1105/tpc.010422, 11971136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. John I, Hackett R, Cooper W, et al. Cloning and characterization of tomato leaf senescence-related cDNAs. Plant Mol Biol, 1997, 33: 641–651, 1:CAS:528:DyaK2sXisVKhtr8%3D, 10.1023/A:1005746831643, 9132056

    Article  PubMed  CAS  Google Scholar 

  27. Miao Y, Laun T, Zimmermann P, et al. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol, 2004, 55: 853–867, 1:CAS:528:DC%2BD2MXmtlGluw%3D%3D, 15604721

    Article  PubMed  CAS  Google Scholar 

  28. Robatzek S, Somssich I E. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J, 2001, 28: 123–133, 1:CAS:528:DC%2BD3MXovV2ksrk%3D, 10.1046/j.1365-313X.2001.01131.x, 11722756

    Article  PubMed  CAS  Google Scholar 

  29. Gang W, Juan L, Wei G. Molecular cloning, expressional profiling, DNA binding and trans-activation property studies of QRAP2 from Arabidopsis thaliana. Chin Sci Bull, 2005, 50: 1873–1878, 10.1007/BF02899635

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Wang, X. & Chen, J. Overexpression of the Rap2.4f transcriptional factor in Arabidopsis promotes leaf senescence. Sci. China Life Sci. 53, 1221–1226 (2010). https://doi.org/10.1007/s11427-010-4068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4068-3

Keywords

Navigation