Skip to main content
Log in

Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Differences in rates of nucleotide or amino acid substitutions among major groups of organisms are repeatedly found and well documented. A growing body of evidence suggests a link between the rate of neutral molecular change within populations and the evolution of species diversity. More than 98% of terrestrial fungi belong to the phyla Ascomycota or Basidiomycota. The former is considerably richer in number of species than the latter. We obtained DNA sequences of 21 protein-coding genes from the lichenized fungus Rhizoplaca chrysoleuca and used them together with sequences from GenBank for subsequent analyses. Three datasets were used to test rate discrepancies between Ascomycota and Basidiomycota and that within Ascomycota: (i) 13 taxa including 105 protein-coding genes, (ii) nine taxa including 21 protein-coding genes, and (iii) nuclear LSU rDNA of 299 fungal species. Based on analyses of the 105 protein-coding genes and nuclear LSU rDNA datasets, we found that the evolutionary rate was higher in Ascomycota than in Basidiomycota. The differences in substitution rates between Ascomycota and Basidiomycota were significant. Within Ascomycota, the species-rich Sordariomycetes has the fastest evolutionary rate, while Leotiomycetes has the slowest. Our results indicate that the main contribution to the higher substitution rates in Ascomycota does not come from mutualism, ecological conditions, sterility, metabolic rate or shorter generation time, but is possibly caused by the founder effect. This is another example of the correlation between species number and evolutionary rates, which is consistent with the hypothesis that the founder effect is responsible for accelerated substitution rates in diverse clades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Resh V H, Cardé R T. Encyclopedia of Insects. San Diego: Academic Press, 2003. 209–229

    Google Scholar 

  2. Hughes C, Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA, 2006, 103: 10334–10339, 1:CAS:528:DC%2BD28XntlOhsr8%3D, 10.1073/pnas.0601928103, 16801546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Kristensen N P. Phylogeny of endopterygote insects, the most successful lineage of living organisms. Eur J Entomol, 1999, 96: 237–253

    Google Scholar 

  4. Dodd M E, Silvertown J, Chase M W. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution, 1999, 53: 732–744, 10.2307/2640713

    Article  Google Scholar 

  5. Bond J E, Opell B D. Testing adaptive radiation and key innovation hypotheses in spiders. Evolution, 1998, 52: 403–414, 10.2307/2411077

    Article  Google Scholar 

  6. Arbogast B S, Edwards S V, Wakeley J, et al. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu Rev Ecol Syst, 2002, 33: 707–740, 10.1146/annurev.ecolsys.33.010802.150500

    Article  Google Scholar 

  7. Britten R J. Rates of DNA-sequence evolution differ between taxonomic groups. Science, 1986, 231: 1393–1398, 1:CAS:528:DyaL28XhsVCitLw%3D, 10.1126/science.3082006, 3082006

    Article  PubMed  CAS  Google Scholar 

  8. Bromham L, Penny D. The modern molecular clock. Nat Rev Genet, 2003, 4: 216–224, 1:CAS:528:DC%2BD3sXhsFWqt7w%3D, 10.1038/nrg1020, 12610526

    Article  PubMed  CAS  Google Scholar 

  9. Woolfit M, Bromham L. Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol, 2003, 20: 1545–1555, 1:CAS:528:DC%2BD3sXntlantbg%3D, 10.1093/molbev/msg167, 12832648

    Article  PubMed  CAS  Google Scholar 

  10. Langley C H, Fitch W M. An examination of the constancy of the rate of molecular evolution. J Mol Evol, 1974, 3: 161–167, 1:CAS:528:DyaE2cXltlWku7c%3D, 10.1007/BF01797451, 4368400

    Article  PubMed  CAS  Google Scholar 

  11. Lutzoni F, Pagel M. Accelerated evolution as a consequence of transitions to mutualism. Proc Natl Acad Sci USA, 1997, 94: 11422–11427, 1:CAS:528:DyaK2sXmslentrk%3D, 10.1073/pnas.94.21.11422, 11038586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Margoliash E. Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA, 1963, 50: 672–679, 1:CAS:528:DyaF2cXjt1Sqtg%3D%3D, 10.1073/pnas.50.4.672, 14077496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Bryson V, Vogel H. Evolving Genes and Proteins. New York: Academic Press, 1965. 97–166

    Google Scholar 

  14. Fontanillas E, Welch J J, Thomas J A, et al. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla. BMC Evol Biol, 2007, 7: 95, 10.1186/1471-2148-7-95, 17592650

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mooers A O, Harvey P H. Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol Phylogenet Evol, 1994, 3: 344–350, 1:CAS:528:DyaK2MXjsVWksLk%3D, 10.1006/mpev.1994.1040, 7697191

    Article  PubMed  CAS  Google Scholar 

  16. Bromham L. Molecular clocks in reptiles: life history influences rate of molecular evolution. Mol Biol Evol, 2002, 19: 302–309, 1:CAS:528:DC%2BD38XitFSnsLo%3D, 11861889

    Article  PubMed  CAS  Google Scholar 

  17. Bromham L, Rambaut A, Harvey P H. Determinants of rate variation in mammalian DNA sequence evolution. J Mol Evol, 1996, 43: 610–621, 1:CAS:528:DyaK2sXislKjtg%3D%3D, 10.1007/BF02202109, 8995058

    Article  PubMed  CAS  Google Scholar 

  18. Thomas J A, Welch J J, Woolfit M, et al. There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proc Natl Acad Sci USA, 2006, 103: 7366–7371, 1:CAS:528:DC%2BD28XkslOrsL0%3D, 10.1073/pnas.0510251103, 16651532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Martin A P, Palumbi S R. Body size, metabolic-Rate, generation time, and the molecular clock. Proc Natl Acad Sci USA, 1993, 90: 4087–4091, 1:CAS:528:DyaK3sXkt1ehs7o%3D, 10.1073/pnas.90.9.4087, 8483925

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Ohta T. An examination of the generation-time effect on molecular evolution. Proc Natl Acad Sci USA, 1993, 90: 10676–10680, 1:CAS:528:DyaK2cXisF2gtg%3D%3D, 10.1073/pnas.90.22.10676, 8248159

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Gu X, Li W H. Higher amino acid substitution in rodents than in humans. Mol Phylogenet Evol, 1992, 1: 211–214, 1:CAS:528:DyaK3sXisFajt7c%3D, 10.1016/1055-7903(92)90017-B, 1342937

    Article  PubMed  CAS  Google Scholar 

  22. Bousquet J, Strauss S H, Doerksen A H, et al. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc Natl Acad Sci USA, 1992, 89: 7844–7848, 1:CAS:528:DyaK3sXksVahurg%3D, 10.1073/pnas.89.16.7844, 1502205

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Conti E, Fischbach A, Sytsma K J. Tribal relationships in Onagraceae: implications from rbcL sequence data. Ann Mo Bot Gard, 1993, 80: 672–685, 10.2307/2399853

    Article  Google Scholar 

  24. Laroche J, Li P, Maggia L, et al. Molecular evolution of angiosperm mitochondrial introns and exons. Proc Natl Acad Sci USA, 1997, 94: 5722–5727, 1:CAS:528:DyaK2sXjsFKqs74%3D, 10.1073/pnas.94.11.5722, 9159140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Kay K M, Whittall J B, Hodges S A. A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol, 2006, 6: 36, 10.1186/1471-2148-6-36, 16638138

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zoller S, Lutzoni F. Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Mol Phylogenet Evol, 2003, 29: 629–640, 1:CAS:528:DC%2BD3sXovVWnu78%3D, 10.1016/S1055-7903(03)00215-X, 14615198

    Article  PubMed  CAS  Google Scholar 

  27. Lumbsch H T, Hipp A L, Divakar P K, et al. Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evol Biol, 2008, 8: 257, 10.1186/1471-2148-8-257, 18808710

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bromham L, Cardillo M. Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. J Evolution Biol, 2003, 16: 200–207, 1:CAS:528:DC%2BD3sXivVyntLY%3D, 10.1046/j.1420-9101.2003.00526.x

    Article  CAS  Google Scholar 

  29. Barraclough T G, Savolainen V. Evolutionary rates and species diversity in flowering plants. Evolution, 2001, 55: 677–683, 1:CAS:528:DC%2BD3MXktleqtL0%3D, 10.1554/0014-3820(2001)055[0677:ERASDI]2.0.CO;2, 11392385

    Article  PubMed  CAS  Google Scholar 

  30. Webster A J, Payne R J H, Pagel M. Molecular phylogenies link rates of evolution and speciation. Science, 2003, 301: 478–478, 1:CAS:528:DC%2BD3sXlvVGkt7g%3D, 10.1126/science.1083202, 12881561

    Article  PubMed  CAS  Google Scholar 

  31. Jobson R W, Albert V A. Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics, 2002, 18: 127–136

    Google Scholar 

  32. Mindell D P, Sites J W, Graur D. Speciational evolution: a phylogenetic test with allozymes in Sceloporus (Reptilia). Cladistics, 1989, 5: 49–61, 10.1111/j.1096-0031.1989.tb00482.x

    Article  Google Scholar 

  33. Mindell D P, Thacker C E. Rates of molecular evolution: phylogenetic issues and applications. Annu Rev Ecol Syst, 1996, 27: 279–303, 10.1146/annurev.ecolsys.27.1.279

    Article  Google Scholar 

  34. Barraclough T G, Harvey P H, Nee S. Rate of rbcL gene sequence evolution and species diversification in flowering plants (angiosperms). P Roy Soc Lond B Bio, 1996, 263: 589–591, 10.1098/rspb.1996.0088

    Article  Google Scholar 

  35. Mayr E. Animal Species and Evolution. Cambridge, MA: Harvard University Press, 1963. 1–797

    Book  Google Scholar 

  36. Carson H L, Templeton A R. Genetic revolution in relation to speciation: the founding of new populations. Annu Rev Ecol Syst, 1984, 15: 97–131, 10.1146/annurev.es.15.110184.000525

    Article  Google Scholar 

  37. Harrison R G. Molecular changes at speciation. Annu Rev Ecol Syst, 1991, 22: 281–308, 10.1146/annurev.es.22.110191.001433

    Article  Google Scholar 

  38. Coyne J A. Genetics and speciation. Nature, 1992, 355: 511–515, 1:STN:280:DyaK387lvVSnsQ%3D%3D, 10.1038/355511a0, 1741030

    Article  PubMed  CAS  Google Scholar 

  39. Gould S J, Eldredge N. Punctuated equilibrium comes of age. Nature, 1993, 366: 223–227, 1:STN:280:DyaK2c%2FltVWktg%3D%3D, 10.1038/366223a0, 8232582

    Article  PubMed  CAS  Google Scholar 

  40. Eldredge N, Gould S J. Punctuated equilibrium prevails. Nature, 1988, 332: 211–212, 10.1038/332211b0

    Article  Google Scholar 

  41. Webster A J, Payne R J H, Pagel M. Molecular phylogenies link rates of evolution and speciation. Science, 2003, 301: 478, 1:CAS:528:DC%2BD3sXlvVGkt7g%3D, 10.1126/science.1083202, 12881561

    Article  PubMed  CAS  Google Scholar 

  42. Wainright P O, Hinkle G, Sogin M L, et al. Monophyletic origins of the metazoa: an evolutionary link with fungi. Science, 1993, 260: 340–342, 1:STN:280:DyaK3s3islSnsw%3D%3D, 10.1126/science.8469985, 8469985

    Article  PubMed  CAS  Google Scholar 

  43. Alexopoulos C J, Mims C W, Blackwell M. Introductory Mycology. 4th ed. New York: John Wiley & Sons, 1996. 1–880

    Google Scholar 

  44. Hibbett D S, Binder M, Bischoff J F, et al. A higher-level phylogenetic classification of the fungi. Mycol Res, 2007, 111: 509–547, 10.1016/j.mycres.2007.03.004, 17572334

    Article  PubMed  Google Scholar 

  45. Kirk P M, Cannon P F, David J C, et al. Ainsworth & Bisby’s Dictionary of the Fungi. 10th ed. Wallingford (Oxon): CAB International, 2008. 1–771

    Google Scholar 

  46. Lutzoni F, Kauff F, Cox C, et al. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot, 2004, 91: 1446–1480, 10.3732/ajb.91.10.1446

    Article  PubMed  Google Scholar 

  47. Hawksworth D L. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res, 1991, 95: 641–655, 10.1016/S0953-7562(09)80810-1

    Article  Google Scholar 

  48. Hawksworth D L. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res, 2001, 105: 1422–1432, 10.1017/S0953756201004725

    Article  Google Scholar 

  49. Spatafora J W, Sung G H, Johnson D, et al. A five-gene phylogeny of Pezizomycotina. Mycologia, 2006, 98: 1018–1028, 1:CAS:528:DC%2BD2sXltlOgu7s%3D, 10.3852/mycologia.98.6.1018, 17486977

    Article  PubMed  CAS  Google Scholar 

  50. Miadlikowska J, Kauff F, Hofstetter V, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 2006, 98: 1088–1103, 1:CAS:528:DC%2BD2sXltlOgu7c%3D, 10.3852/mycologia.98.6.1088, 17486983

    Article  PubMed  CAS  Google Scholar 

  51. Wedin M, Wiklund E, Crewe A, et al. Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycol Res, 2005, 109: 159–172, 1:CAS:528:DC%2BD2MXhs1Ghsr0%3D, 10.1017/S0953756204002102, 15839100

    Article  PubMed  CAS  Google Scholar 

  52. Persoh D, Beck A, Rambold G. The distribution of ascus types and photobiontal selection in Lecanoromycetes (Ascomycota) against the background of a revised SSU nrDNA phylogeny. Mycol Prog, 2004, 3: 103–121, 10.1007/s11557-006-0081-0

    Article  Google Scholar 

  53. James T Y, Kauff F, Schoch C, et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature, 2006, 443: 818–822, 1:CAS:528:DC%2BD28XhtVyktbjN, 10.1038/nature05110, 17051209

    Article  PubMed  CAS  Google Scholar 

  54. Lumbsch H T, Schmitt I, Palice Z, et al. Supraordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian analysis of combined nuclear and mitochondrial sequences. Mol Phylogenet Evol, 2004, 31: 822–832, 1:CAS:528:DC%2BD2cXjs1als7w%3D, 10.1016/j.ympev.2003.11.001, 15120381

    Article  PubMed  CAS  Google Scholar 

  55. Zhou Q M, Guo S Y, Huang M R, et al. A study of the genetic variability of Rhizoplaca chrysoleuca using DNA sequences and secondary metabolic substances. Mycologia, 2006, 98: 57–67, 1:CAS:528:DC%2BD28Xms1OmsL8%3D, 10.3852/mycologia.98.1.57, 16800305

    Article  PubMed  CAS  Google Scholar 

  56. Thompson J D, Higgins D G, Gibson T J. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: 4673–4680, 1:CAS:528:DyaK2MXitlSgu74%3D, 10.1093/nar/22.22.4673, 7984417

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599, 1:CAS:528:DC%2BD2sXpsVGrsL8%3D, 10.1093/molbev/msm092, 17488738

    Article  PubMed  CAS  Google Scholar 

  58. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci, 1997, 13: 555–556, 1:CAS:528:DyaK2sXntlGnu7s%3D, 9367129

    PubMed  CAS  Google Scholar 

  59. Felsenstein J. Confidence-limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39: 783–791, 10.2307/2408678

    Article  Google Scholar 

  60. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA, 2004, 101: 11030–11035, 1:CAS:528:DC%2BD2cXmsVCmt7s%3D, 10.1073/pnas.0404206101, 15258291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Bryson V, Vogel. H. Evolving Genes and Proteins. New York: Academic Press, 1965. 97–166

    Google Scholar 

  62. Lumbsch H T, Huhndorf S M. Whatever happened to the Pyrenomycetes and Loculoascomycetes? Mycol Res, 2007, 111: 1064–1074, 10.1016/j.mycres.2007.04.004, 18029164

    Article  PubMed  Google Scholar 

  63. Moran N A. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA, 1996, 93: 2873–2878, 1:CAS:528:DyaK28XitVCit78%3D, 10.1073/pnas.93.7.2873, 8610134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Rand D M. Thermal habit, metabolic-rate and the evolution of mitochondrial DNA. Trends Ecol Evol, 1994, 9: 125–131, 10.1016/0169-5347(94)90176-7

    Article  PubMed  CAS  Google Scholar 

  65. Kohne D E. Evolution of higher-organism DNA. Q Rev Biophys, 1970, 3: 327–375, 1:CAS:528:DyaE3MXhtVU%3D, 10.1017/S0033583500004765, 4989149

    Article  PubMed  CAS  Google Scholar 

  66. Lynch M, Blanchard J L. Deleterious mutation accumulation in organelle genomes. Genetica, 1998, 103: 29–39, 10.1023/A:1017022522486

    Article  Google Scholar 

  67. Taylor J W. Making the Deuteromycota redundant: a practical integration of mitosporic fungi. Can J Bot, 1995, 73: S754–S759, 10.1139/b95-319

    Article  Google Scholar 

  68. Kavanagh K. Fungi: Biology and Applications. New York: John Wiley & Sons, 2005. 1–239

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lumbsch H. Thorsten or JiangChun Wei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Guo, S., Huang, M. et al. Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. Sci. China Life Sci. 53, 1163–1169 (2010). https://doi.org/10.1007/s11427-010-4063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4063-8

Keywords

Navigation