Skip to main content
Log in

In vivo fluorescence observation of parasporal inclusion formation in Bacillus thuringiensis

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

A recombinant gene expressing a Cry1Ac-GFP fusion protein with a molecular mass of approximately 160 kD was constructed to investigate the expression of cry1Ac, the localization of its gene product Cry1Ac, and its role in crystal development in Bacillus thuringiensis. The cry1Ac-gfp fusion gene under the control of the cry1Ac promoter was cloned into the plasmid pHT304, and this construct was designated pHTcry1Ac-gfp. pHTcry1Ac-gfp was transformed into the crystal-negative strain, HD-73 cry, and the resulting strain was named HD-73(pHTcry1Ac-gfp). The gfp gene was then inserted into the large HD-73 endogenous plasmid pHT73 and fused with the 3′ terminal of the cry1Ac gene by homologous recombination, yielding HD-73Φ(cry1Ac-gfp)3534. Laser confocal microscopy and Western blot analyses showed for the first time that the Cry1Ac-GFP fusion proteins in both HD-73(pHTcry1Ac-gfp) and HD-73Φ(cry1Ac-gfp)3534 were produced during asymmetric septum formation. Surprisingly, the Cry1Ac-GFP fusion protein showed polarity and was located near the septa in both strains. There was no significant difference between Cry1Ac-GFP and Cry1Ac in their toxicity to Plutella xylostella larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schnepf E, Crickmore N, Van R J, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev, 1998, 62:775–806 1:CAS:528:DyaK1cXmtFOju7w%3D, 9729609

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol, 1995, 177:6027–6032 1:CAS:528:DyaK2MXptVequrc%3D, 7592363

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Agaisse H, Lereclus D. Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Mol Microbiol, 1994, 13:97–107 1:CAS:528:DyaK2cXlt1KltLw%3D, 10.1111/j.1365-2958.1994.tb00405.x, 7984098

    Article  PubMed  CAS  Google Scholar 

  4. Oestergaard J, Ehlers R U, Martinez-Ramirez A C, et al. Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation. Appl Environ Microbiol, 2007, 73:3623–3629 1:CAS:528:DC%2BD2sXmtlKktLc%3D, 10.1128/AEM.01056-06, 17416690

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Piggot P J, Hilbert D W. Sporulation of Bacillus subtilis. Curr Opin Microbiol, 2004, 7:579–586 1:CAS:528:DC%2BD2cXhtVWjtrvI, 10.1016/j.mib.2004.10.001, 15556029

    Article  PubMed  CAS  Google Scholar 

  6. Liu C W, Lin C C, Yiu J C, et al. Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet, 2008, 117:75–88 1:CAS:528:DC%2BD1cXmtlWitrk%3D, 10.1007/s00122-008-0754-y, 18415072

    Article  PubMed  CAS  Google Scholar 

  7. Grover D, Yang J, Tavare S, et al. Simultaneous tracking of fly movement and gene expression using GFP. BMC Biotechnol, 2008, 8:93 10.1186/1472-6750-8-93, 19087237

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chelur D S, Ernstrom G G, Goodman M B, et al. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature, 2002, 420:669–673 1:CAS:528:DC%2BD38XpsVSitbg%3D, 10.1038/nature01205, 12478294

    Article  PubMed  CAS  Google Scholar 

  9. Ellermeier C D, Hobbs E C, Gonzalez-Pastor J E, et al. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell, 2006, 124:549–559 1:CAS:528:DC%2BD28Xhslaqs7g%3D, 10.1016/j.cell.2005.11.041, 16469701

    Article  PubMed  CAS  Google Scholar 

  10. Hahn J, Maier B, Haijema B J, et al. Transformation proteins and DNA uptake localize to the cell poles in Bacillus subtilis. Cell, 2005, 122:59–71 1:CAS:528:DC%2BD2MXmsFeitbY%3D, 10.1016/j.cell.2005.04.035, 16009133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Roh J Y, Li M S, Chang J H, et al. Expression and characterization of a recombinant Cry1Ac crystal protein with enhanced green fluorescent protein in acrystalliferous Bacillus thuringiensis. Lett Appl Microbiol, 2004, 38:393–399 1:CAS:528:DC%2BD2cXks1Grs7s%3D, 10.1111/j.1472-765X.2004.01505.x, 15059210

    Article  PubMed  CAS  Google Scholar 

  12. Roh J Y, Lee I H, Li M S, et al. Expression of a recombinant Cry1Ac crystal protein fused with a green fluorescent protein in Bacillus thuringiensis subsp. kurstaki Cry-B. J Microbiol, 2004, 42:340–345 1:CAS:528:DC%2BD2MXhtFaltLg%3D, 15650692

    PubMed  CAS  Google Scholar 

  13. Bravo A, Agaisse H, Salamitou S, et al. Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis. Mol Gen Genet, 1996, 250:734–741 1:CAS:528:DyaK28XislOqtr4%3D, 8628234

    PubMed  CAS  Google Scholar 

  14. Lereclus D, Arantes O, Chaufaux J, et al. Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett, 1989, 51:211–217 1:STN:280:DyaL1MznvVOiug%3D%3D, 2550317

    PubMed  CAS  Google Scholar 

  15. Schaeffer P, Millet J, Aubert J P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA, 1965, 54:701–711 10.1073/pnas.54.3.704

    Article  Google Scholar 

  16. Cormack B P, Valdivia R H, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 1996, 173:33–38 1:CAS:528:DyaK28XktVOlu7c%3D, 10.1016/0378-1119(95)00685-0, 8707053

    Article  PubMed  CAS  Google Scholar 

  17. Arantes O, Lereclus D. Construction of cloning vectors for Bacillus thuringiensis. Gene, 1991, 108:115–119 1:CAS:528:DyaK38Xlt1GktA%3D%3D, 10.1016/0378-1119(91)90495-W, 1662180

    Article  PubMed  CAS  Google Scholar 

  18. Arnaud M, Chastanet A, Débarbouillé M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol, 2004, 70:6887–6891 1:CAS:528:DC%2BD2cXhtVSju7rF, 10.1128/AEM.70.11.6887-6891.2004, 15528558

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Choma C T, Surewicz W K, Carey P R, et al. Secondary structure of the entomocidal toxin from Bacillus thuringiensis subsp. kurstaki HD-73. J Protein Chem, 1990, 9:87–94 1:CAS:528:DyaK3cXktlKlsLk%3D, 10.1007/BF01024989, 2340079

    Article  PubMed  CAS  Google Scholar 

  20. Mohan M, Gujar G T. Characterization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth (Plutellidae: Lepidoptera). J Invertebr Pathol, 2003, 82:1–11 1:CAS:528:DC%2BD3sXhtVCjtbk%3D, 10.1016/S0022-2011(02)00194-5, 12581714

    Article  PubMed  CAS  Google Scholar 

  21. Espinasse S, Gohar M, Lereclus D, et al. An extracytoplasmic-function sigma factor is involved in a pathway controlling beta-exotoxin I production in Bacillus thuringiensis subsp. thuringiensis strain 407-1. J Bacteriol, 2004, 186:3108–3116 1:CAS:528:DC%2BD2cXktVGhu78%3D, 10.1128/JB.186.10.3108-3116.2004, 15126472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Mignot T, Mock M, Fouet A. A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol Microbiol, 2003, 47:917–927 1:CAS:528:DC%2BD3sXhtlOmtrw%3D, 10.1046/j.1365-2958.2003.03345.x, 12581349

    Article  PubMed  CAS  Google Scholar 

  23. Bechtel D B, Bulla L A Jr. Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J Bacteriol, 1976, 127:1472–1481 1:STN:280:DyaE283mtVSntQ%3D%3D, 182671

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FuPing Song or DaFang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Rong, R., Song, F. et al. In vivo fluorescence observation of parasporal inclusion formation in Bacillus thuringiensis. Sci. China Life Sci. 53, 1106–1111 (2010). https://doi.org/10.1007/s11427-010-4058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4058-5

Keywords

Navigation