Skip to main content
Log in

The distribution pattern of DNA and protoxin in Bacillus thuringiensis as revealed by laser confocal microscopy analysis

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

It was reported that the parasporal crystal from Bacillus thuringiensis contained DNA fragments. To investigate the distribution of protoxin and DNA in B. thuringiensis cells at different growth stages, a cry1Ac-gfp fusion gene was constructed and expressed in an acrystalliferous B. thuringiensis strain, in which the localization of DNA and protoxin were indicated by DNA-specific dye and green fluorescent protein, respectively. When the recombinant cells were at the vegetative growth stage, the Cry1Ac-GFP fusion protein was not expressed and the DNA fluorescent signal was evenly distributed throughout the cell. At the initial stage of sporulation, the Cry1Ac-GFP fusion protein was expressed and accumulated as inclusion body, while two condensed DNA signals existed at each pole of the cell. With the extension of culture time, it seemed that the DNA fluorescence from the region of spore development gradually became faint or vanishing, while the DNA signal was still present in the other pole or the remaining area of the mother cell. Interestingly and unexpectedly, there was no DNA fluorescence signal in the region of the growing and mature inclusion body of Cry1Ac-GFP in B. thuringiensis cell, which might indicate that the DNA embodied in the inclusion body was not accessible to the DNA-specific dye. This was the first investigation devoted exclusively to the in vivo distribution of protoxin and DNA in B. thuringiensis at different growth stages. These data shed light on deeply understanding the process of sporulation and parasporal crystal formation as well as further exploring the interaction of DNA and protoxin in B. thuringiensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adang MJ, Staver MJ, Rocheleau TA, Leighton J, Barker RF, Thompson DV (1985) Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36:289–300

    Article  CAS  PubMed  Google Scholar 

  • Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108:115–119. doi:10.1016/0378-1119(91)90495-W

    Article  CAS  PubMed  Google Scholar 

  • Bechtel DB, Bulla LA Jr (1976) Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J Bacteriol 127:1472–1481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ben-Yehuda S, Rudner DZ, Losick R (2003) RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299:532–536

    Article  CAS  PubMed  Google Scholar 

  • Bian X, Huang F, Stewart FA, Xia L, Zhang Y, Müller R (2012) Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering. Chembiochem 13:1946–1952. doi:10.1002/cbic.201200310

    Article  CAS  PubMed  Google Scholar 

  • Bietlot HP, Schernthaner JP, Milne RE, Clairmont FR, Bhella RS, Kaplan H (1993) Evidence that the CryIA crystal protein from Bacillus thuringiensis is associated with DNA. J Biol Chem 268:8240–8245

    CAS  PubMed  Google Scholar 

  • Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369. doi:10.1016/j.addr.2012.09.039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clairmont FR, Milne RE, Pham VT, Carrière MB, Kaplan H (1998) Role of DNA in the activation of the Cry1A insecticidal crystal protein from Bacillus thuringiensis. J Biol Chem 273:9292–9296. doi:10.1074/jbc.273.15.9292

    Article  CAS  PubMed  Google Scholar 

  • Ellermeier CD, Hobbs EC, Gonzalez-Pastor JE, Losick R (2006) A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124:549–559. doi:10.1016/j.cell.2005.11.041

    Article  CAS  PubMed  Google Scholar 

  • Errington J (1993) Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57:1–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Müller R, Stewart AF, Zhang Y (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30:440–446. doi:10.1038/nbt.2183

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Li J, Liu Y, Song F, Zhang J (2011) The role of DNA binding with the Cry8Ea1 toxin of Bacillus thuringiensis. FEMS Microbiol Lett 317:203–210. doi:10.1111/j.1574-6968.2011.02230.x

    Article  CAS  PubMed  Google Scholar 

  • Park HW, Ge B, Bauer LS, Federici BA (1998) Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl Environ Microbiol 64:3932–3938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pendleton IR, Morrison RB (1966) Separation of the spores and crystals of Bacillus thuringiensis. Nature 212:728–729

    Article  Google Scholar 

  • Penfold RJ, Pemberton JM (1992) An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118:145–146. doi:10.1016/0378-1119(92)90263-O

    Article  CAS  PubMed  Google Scholar 

  • Schernthaner JP, Milne RE, Kaplan H (2002) Characterization of a novel insect digestive DNase with a highly alkaline pH optimum. Insect Biochem Mol Biol 32:255–263. doi:10.1016/S0965-1748(01)00084-4

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Fu Z, Ding X, Xia L (2008) Evaluating the insecticidal genes and their expressed products in Bacillus thuringiensis strains by combining PCR with mass spectrometry. Appl Environ Microbiol 74:6811–6813. doi:10.1128/AEM. 01085-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Wei W, Ding X, Xia L, Yuan Z (2007) Detection of chromosomally located and plasmid-borne genes on 20 kb DNA fragments in parasporal crystals from Bacillus thuringiensis. Arch Microbiol 188:327–332. doi:10.1007/s00203-007-0252-7

    Article  CAS  PubMed  Google Scholar 

  • van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16. doi:10.1016/j.jip.2009.02.009

    Article  PubMed  Google Scholar 

  • Wu F, Zhao X, Sun Y, Li W, Xia L, Ding X, Yin J, Hu S, Yu Z, Tang Y (2012) Construction of gene library of 20 kb DNAs from parasporal crystal in Bacillus thuringiensis strain 4.0718: phylogenetic analysis and molecular docking. Curr Microbiol 64:106–111. doi:10.1007/s00284-011-0038-7

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Sun Y, Ding X, Fu Z, Mo X, Zhang H, Yuan Z (2005) Identification of cry-type genes on 20-kb DNA associated with Cry1 crystal proteins from Bacillus thuringiensis. Curr Microbiol 51:53–58. doi:10.1007/s00284-005-4504-y

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Ding X, Xia L, Yu Z, Lv Y, Hu S, Huang S, Cao Z, Xiao X (2011) Transcription of gene in an acrystalliferous strain of Bacillus thuringiensis XBU001 positively regulated by the metalloprotease camelysin gene at the onset of stationary phase. FEMS Microbiol Lett 318:92–100. doi:10.1111/j.1574-6968.2011.02247.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Muyrers JP, Testa G, Stewart AF (2000) DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol 18:1314–1317. doi:10.1038/82449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from National Natural Science Foundation of China (30900037), State Key Laboratory of Microbial Technology (M2013-04), Hunan Provincial Natural Science Foundation (12JJ6024, 09JJ3078), and Program for Excellent Talents in Hunan Normal University (ET13105), the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province (20134486), People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Sun.

Additional information

Quanfang Hu and Jingfang Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 176 kb)

ESM 2

(XLS 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Wang, J., Fu, Z. et al. The distribution pattern of DNA and protoxin in Bacillus thuringiensis as revealed by laser confocal microscopy analysis. Appl Microbiol Biotechnol 99, 5605–5612 (2015). https://doi.org/10.1007/s00253-015-6467-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6467-7

Keywords

Navigation