Skip to main content
Log in

Efficient expression of codon-adapted human acetaldehyde dehydrogenase 2 cDNA with 6×His tag in Pichia pastoris

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Human mitochondrial acetaldehyde dehydrogenase 2 (ALDH2) catalyzes the oxidation of acetaldehyde to acetic acid. Therefore, ALDH2 has therapeutic potential in detoxification of acetaldehyde. Furthermore, ALDH2 catalyzes nitroglycerin to nitrate and 1, 2-glyceryldinitrate during therapy for angina pectoris, myocardial infarction, and heart failure. Large quantities of ALDH2 will be needed for potential clinical practice. In this study, Pichia pastoris was used as a platform for expression of human ALDH2. Based on the ALDH2*1 cDNA sequence, we designed ALDH2 cDNA by choosing the P. pastoris preferred codons and by decreasing the G + C content level. The sequence was synthesized using the overlap extension PCR method. The cDNA and 6×His tags were subcloned into the plasmid pPIC9K. The recombinant protein was expressed in P. pastoris GS115 and purified using Ni2+-Sepharose affinity chromatography. The amount of secreted protein in the culture was 80 mg/L in shake-flask cultivation and 260 mg/L in high-density bioreactor fermentation. Secreted ALDH2 was easily purified from the culture supernatant by using Ni2+-Sepharose affinity chromatography. After purification of the fermentation supernatant, the enzyme had a specific activity of 1.2 U/mg protein. The yield was about 16 mg/L in a shake flask culture of P. pastoris GS115 which contained the original human ALDH2*1 cDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ni L, Zhou J, Hurley T D, et al. Human liver mitochondrial aldehyde dehydrogenase: three-dimensional structure and the restoration of solubility and activity of chimeric forms. Protein Sci, 1999, 8: 2784–2790 10.1110/ps.8.12.2784, 1:CAS:528:DC%2BD3cXhtFyltA%3D%3D, 10631996

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Steinmetz C G, Xie P, Weiner H, et al. Structure of mitochondrial aldehyde dehydrogenase: The genetic component of ethanol aversion. Structure, 1997, 5: 701–711 10.1016/S0969-2126(97)00224-4, 1:CAS:528:DyaK2sXjvFamtLw%3D, 9195888

    Article  PubMed  CAS  Google Scholar 

  3. Ikawa M, Impraim C C, Wang G, et al. Isolation and characterization of aldehyde dehydrogenase isozymes from usual and atypical human livers. J Biol Chem, 1983, 258: 6282–6287 1:CAS:528:DyaL3sXktFymt7o%3D, 6189823

    PubMed  CAS  Google Scholar 

  4. Agarwal D P, Goedde H W. Human aldehyde dehydrogenases: their role in alcoholism. Alcohol, 1989, 6: 517–523 10.1016/0741-8329(89)90061-X, 1:CAS:528:DyaK3cXktlGqtrc%3D, 2688685

    Article  PubMed  CAS  Google Scholar 

  5. Mizoi Y, Yamamoto K, Ueno Y, et al. Involvement of genetic polymorphism of alcohol and aldehyde dehydrogenase in individual variation of alcohol metabolism. Alcohol Alcohol, 1994, 29: 707–710 1:STN:280:DyaK2M3gvFOhtQ%3D%3D, 7695788

    PubMed  CAS  Google Scholar 

  6. Larson H N, Weiner H, Hurley, T D. Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase “Asian” variant. J Biol Chem, 2005, 280: 30550–30556 10.1074/jbc.M502345200, 1:CAS:528:DC%2BD2MXos1CqsbY%3D, 15983043

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Perez-Miller S J, Hurley T D. Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase. Biochemistry, 2003, 42: 7100–7109 10.1021/bi034182w, 1:CAS:528:DC%2BD3sXjvVWku7s%3D, 12795606

    Article  PubMed  CAS  Google Scholar 

  8. Chen Z, Foster M W, Zhang J, et al. An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad Sci USA, 2005, 102: 12159–12164 10.1073/pnas.0503723102, 1:CAS:528:DC%2BD2MXps1yqs78%3D, 16103363

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Chen Z, Stamler J S. Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase. Trends Cardiovasc Med, 2006, 16: 259–265 10.1016/j.tcm.2006.05.001, 1:CAS:528:DC%2BD28XhtFWjtbfN, 17055381

    Article  PubMed  CAS  Google Scholar 

  10. Chen Z, Zhang J, Stamler J S. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci USA, 2002, 99: 8306–8311 10.1073/pnas.122225199, 1:CAS:528:DC%2BD38XkvVGgsb0%3D, 12048254

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Cregg J M, Vedvick T S, Raschke W C. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology, 1993, 11: 905–910 10.1038/nbt0893-905, 1:CAS:528:DyaK3sXmsVajtbk%3D, 7763913

    Article  PubMed  CAS  Google Scholar 

  12. Zocchi A, Jobe A M, Neuhaus J M, et al. Expression and purification of a recombinant avidin with a lowered isoelectric point in Pichia pastoris. Protein Express Purif, 2003, 32: 167–174 10.1016/j.pep.2003.09.001, 1:CAS:528:DC%2BD3sXpt1Wju7k%3D

    Article  CAS  Google Scholar 

  13. He J, Deng J, Zheng Y, et al. A synergistic effect on the production of S-adenosy1-l-methionine in Pichia pastoris by knocking in of S-adenosy1-l-methionine synthase and knocking out of cystathionine-β-synthase. J Biotechnol, 2006, 126: 519–527 10.1016/j.jbiotec.2006.05.009, 1:CAS:528:DC%2BD28XhtFeqtL7O, 16828189

    Article  PubMed  CAS  Google Scholar 

  14. Lee S, Kim T, Stahi C H, et al. Expression of Escherichia coli AppA2 phytase in four yeast systems. Biotechnol Lett, 2005, 27: 327–334 10.1007/s10529-005-0704-6, 1:CAS:528:DC%2BD2MXjtlKmtbg%3D, 15834794

    Article  PubMed  CAS  Google Scholar 

  15. Xiong A, Yao Q, Peng R, et al. High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol, 2006, 72: 1039–1047 10.1007/s00253-006-0384-8, 1:CAS:528:DC%2BD28XhtVWhsrvJ, 16601989

    Article  PubMed  CAS  Google Scholar 

  16. Tarahomjoo S, Katakura Y, Shioya S. Expression of C-terminal repeat region of peptidoglycan hydrolase of Lactococcus lactis IL1403 in methylotrophic yeast Pichia pastoris. J Biosci Bioeng, 2008, 105: 134–139 10.1263/jbb.105.134, 1:CAS:528:DC%2BD1cXltlWrsLs%3D, 18343340

    Article  PubMed  CAS  Google Scholar 

  17. Zheng C, Wang T T Y, Weiner H. Cloning and expression of the full length cDNAs encoding human liver class 1 and 2 aldehyde dehydrogenase. Alcohol Clin Exp Res, 1993, 1: 828–831 10.1111/j.1530-0277.1993.tb00849.x

    Article  Google Scholar 

  18. Li Q, Li Y, Shao M, et al. Cloning and expression of different genotypes of human aldhyde dehydrogenase 2 gene. J Fudan Univ (Natural Science), 2004, 43: 1079–1083 1:CAS:528:DC%2BD2MXhtFajt74%3D

    CAS  Google Scholar 

  19. Li S, Gomelsky M, Duan J, et al. Overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene prevents acetaldehyde-induced cell injury in human umbilical vein endothlial cells. J Biol Chem, 2004, 279: 11244–11255 10.1074/jbc.M308011200, 1:CAS:528:DC%2BD2cXitFyhsLY%3D, 14722101

    Article  PubMed  CAS  Google Scholar 

  20. Zhao X, Huo K, Li Y. Synonymous codon usage in Pichia pastoris. China J Biotechnol, 2000, 16: 308–311 (in Chinese) 1:CAS:528:DC%2BD3cXlt1Omtb0%3D

    CAS  Google Scholar 

  21. Donato A D, Nigris M, Russo N, et al. A method for synthesizing genes and cDNAs by the polymerase chain reaction. Anal Biochem, 1993, 212: 291–293 10.1006/abio.1993.1328, 8368509

    Article  PubMed  Google Scholar 

  22. Su Z, Wu X, Feng Y, et al. High level expression of human endostatin in Pichia pastoris using a synthetic gene construct. Appl Microbiol Biotechnol, 2007, 73: 1355–1362 10.1007/s00253-006-0604-2, 1:CAS:528:DC%2BD2sXjsFKksA%3D%3D, 17115211

    Article  PubMed  CAS  Google Scholar 

  23. Boettner M, Steffens C, Mering C, et al. Sequence-based factors influencing the expression of heterologous genes in the yeast Pichia pastoris—A comparative view on 79 human genes. J Biotechnol, 2007, 130: 1–10 10.1016/j.jbiotec.2007.02.019, 1:CAS:528:DC%2BD2sXkslens7k%3D, 17389146

    Article  PubMed  CAS  Google Scholar 

  24. Hu S, Li L, Qiao J, et al. Codon optimization, expression, and characterization of an internalizing anti-ErbB2 single-chain antibody in Pichia pastoris. Protein Express Purif, 2006, 47: 249–257 10.1016/j.pep.2005.11.014, 1:CAS:528:DC%2BD28Xjsl2ksb8%3D

    Article  CAS  Google Scholar 

  25. Zhang M, Xiao Y, Yu C, et al. Expression of cDNA of Laccase From Panus Rudis in Pichia Pastoris. J Univ Sci Technol China, 2004, 34: 757–762 (in Chinese) 1:CAS:528:DC%2BD2MXht1Knt7o%3D

    CAS  Google Scholar 

  26. Liu H, Pan H, Cai S, et al. The effect of fermentation conditions on glycosylation of recombinant human interferon Omega in yeast Pichia pastoris. China J Biotechnol, 2005, 21: 107–112 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanXin Wu.

Additional information

Supported by the International Collaboration Key Project of Hubei Province (Grant No. 2006CA013) and Sci-Tech Brainstorm Stress Projects of Hubei Province (Grant Nos. 2007AA201C27 and 2007AA301B24).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Lei, M., Wu, Y. et al. Efficient expression of codon-adapted human acetaldehyde dehydrogenase 2 cDNA with 6×His tag in Pichia pastoris. SCI CHINA SER C 52, 935–941 (2009). https://doi.org/10.1007/s11427-009-0134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0134-0

Keywords

Navigation