Skip to main content
Log in

Progress in studies on the DEK protein and its involvement in cellular apoptosis

  • Review
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

DEK protein is an ubiquitous phosphorylated nuclear protein. Specific binding of DEK to DNA could change the topology of DNA and then affect the gene activity of the underlying DNA sequences. It is speculated that there might be some potential relationship between the stress reaction of cells and DEK proteins. The phosphorylation status of DEK protein is altered during death-receptor-mediated cell apoptosis. Both phosphorylation and poly(ADP-ribosyl)ation could promote the release of DEK from apoptotic nuclei to extracellular environment, and in this case DEK becomes a potential autoantigen of some autoimmune diseases. The available evidence powerfully suggests that DEK protein is closely relevant to apoptosis. The overexpression of DEK protein has dual function in cell apoptosis, in terms of inhibiting or triggering cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waldmann T, Scholten I, Kappes F, et al. The DEK protein-an abundant and ubiquitous constituent of mammalian chromatin. Gene, 2004, 343: 1–9, 15563827, 10.1016/j.gene.2004.08.029, 1:CAS:528:DC%2BD2cXhtVahsr7K

    Article  PubMed  CAS  Google Scholar 

  2. Wichmann I, Respaldiza N, Garcia-Lozano J R, et al. Autoantibodies to DEK oncoprotein in systemic lupus erythematosus (SLE). Clin Exp Immunol, 2000, 119: 530–532, 10691927, 10.1046/j.1365-2249.2000.01154.x, 1:STN:280:DC%2BD3c7ls1Wquw%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Dong X, Wang J, Kabir F N, et al. Autoantibodies to DEK oncoprotein in human inflammatory disease. Arthritis Rheum, 2000, 43: 85–93, 10643703, 10.1002/1529-0131(200001)43:1<85::AID-ANR11>3.0.CO;2-D, 1:CAS:528:DC%2BD3cXns1yhug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  4. Dong X, Michelis M A, Wang J, et al. Autoantibodies to DEK oncoprotein in a patient with systemic lupus erythematosus and sarcoidosis. Arthritis Rheum, 1998, 41: 1505–1510, 9704652, 10.1002/1529-0131(199808)41:8<1505::AID-ART23>3.0.CO;2-N, 1:STN:280:DyaK1czmvVemsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  5. Murray K J, Szer W, Grom A A, et al. Antibodies to the 45 kDa DEK nuclear antigen in pauciarticular onset juvenile rheumatoid arthritis and iridocyclitis: Selective association with MHC gene. J Rheumatol, 1997, 24: 560–567, 9058666, 1:STN:280:DyaK2s3htFKquw%3D%3D

    PubMed  CAS  Google Scholar 

  6. Sierakowska H, Williams K R, Szer I S, et al. The putative oncoprotein DEK, part of a chimera protein associated with acute myeloid leukaemia, is an autoantigen in juvenile rheumatoid arthritis. Clin Exp Immunol, 1993, 94: 435–439, 8252804, 1:CAS:528:DyaK2cXlt1WqsQ%3D%3D, 10.1111/j.1365-2249.1993.tb08214.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Von Lindern M, Fornerod M, van Baal S, et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol, 1992, 12: 1687–1697

    Article  Google Scholar 

  8. Ageberg M, Drott K, Olofsson T, et al. Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer, 2008, 47: 276–287, 18181180, 10.1002/gcc.20531, 1:CAS:528:DC%2BD1cXivFers7g%3D

    Article  PubMed  CAS  Google Scholar 

  9. Wise-Draper T M, Mintz-Cole R A, Morris T A, et al. Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res, 2009, 69: 1792–1799, 19223548, 10.1158/0008-5472.CAN-08-2304, 1:CAS:528:DC%2BD1MXisFSrt74%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Wu Q, Li Z, Lin H, et al. DEK overexpression in uterine cervical cancers. Pathol Int, 2008, 58: 378–382, 18477217, 10.1111/j.1440-1827.2008.02239.x, 1:CAS:528:DC%2BD1cXosVWhs78%3D

    Article  PubMed  CAS  Google Scholar 

  11. Orlic M, Spencer C E, Wang L, et al. Expression analysis of 6p22 genomic gain in retinoblastoma. Genes Chromosomes Cancer, 2006, 45: 72–82, 16180235, 10.1002/gcc.20263, 1:CAS:528:DC%2BD2MXht1Kgu7zO

    Article  PubMed  CAS  Google Scholar 

  12. Carro M S, Spiga F M, Quarto M, et al. DEK Expression is controlled by E2F and deregulated in diverse tumor types. Cell Cycle, 2006, 5: 1202–1207, 16721057, 1:CAS:528:DC%2BD28XnvFWqtLc%3D

    Article  PubMed  CAS  Google Scholar 

  13. Sanchez-Carbayo M, Socci N D, Lozano J J, et al. Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol, 2003, 163: 505–516, 12875971, 1:CAS:528:DC%2BD3sXmslSnsL8%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Larramendy M L, Niini T, Elonen E, et al. Overexpression of translocation-associated fusion genes of FGFRI, MYC, NPMI, and DEK, but absence of the translocations in acute myeloid leukemia. A microarray analysis. Haematologica, 2002, 87: 569–577, 12031912, 1:CAS:528:DC%2BD38XlsFCit7o%3D

    PubMed  CAS  Google Scholar 

  15. Kroes R A, Jastrow A, McLone M G, et al. The identification of novel therapeutic targets for the treatment of malignant brain tumors. Cancer Lett, 2000, 156: 191–198, 10880769, 10.1016/S0304-3835(00)00462-6, 1:CAS:528:DC%2BD3cXksFGis7g%3D

    Article  PubMed  CAS  Google Scholar 

  16. Grottke C, Mantwill K, Dietel M, et al. Identification of differentially expressed genes in human melanoma cells with acquired resistance to various antineoplastic drugs. Int J Cancer, 2000, Nov 15; 88: 535–546, 11058868, 10.1002/1097-0215(20001115)88:4<535::AID-IJC4>3.0.CO;2-V, 1:STN:280:DC%2BD3crhtFemuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  17. Kondoh N, Wakatsuki T, Ryo A, et al. Identification and characterization of genes associated with human hepatocellular carcinogenesis. Cancer Res, 1999, 59: 4990–4996, 10519413, 1:CAS:528:DyaK1MXmslWktbk%3D

    PubMed  CAS  Google Scholar 

  18. Wise-Draper T M, Allen H V, Jones E E, et al. Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol, 2006, 26: 7506–7519, 16894028, 10.1128/MCB.00430-06, 1:CAS:528:DC%2BD28XhtFCgur3I

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Wise-Draper T M, Morreale R J, Morris T A, et al. DEK proto-oncogene expression interferes with the normal epithelial differentiation program. Am J Pathol, 2009, 174: 71–81, 19036808, 10.2353/ajpath.2009.080330, 1:CAS:528:DC%2BD1MXhslOlu7w%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Kappes F, Burger K, Baack M, et al. Subcellular localization of the human proto-oncogene protein DEK. J Biol Chem, 2001, 276: 26317–26323, 11333257, 10.1074/jbc.M100162200, 1:CAS:528:DC%2BD3MXlsVKnsbk%3D

    Article  PubMed  CAS  Google Scholar 

  21. Hu H G, Scholten I, Gruss C, et al. The distribution of the DEK protein in mammalian chromatin. Biochem Biophys Res Commun, 2007, 358: 1008–1014, 17524367, 10.1016/j.bbrc.2007.05.019, 1:CAS:528:DC%2BD2sXmtFKqtbk%3D

    Article  PubMed  CAS  Google Scholar 

  22. Kappes F, Fahrer J, Khodadoust M S, et al. DEK is a poly(ADP-ribose)-acceptor in apoptosis and mediates resistance to genotoxic stress. Mol Cell Biol, 2008, 28: 3245–3257, 18332104, 10.1128/MCB.01921-07, 1:CAS:528:DC%2BD1cXlvFeru7Y%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Scholten I. Characterisation of the proto-oncoprotein DEK. doctoral thesis University of Konstanz, 2004

  24. Kappes F, Damoc C, Knippers R, et al. Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol, 2004, 24: 6011–6020, 15199154, 10.1128/MCB.24.13.6011-6020.2004, 1:CAS:528:DC%2BD2cXls1aqtLo%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Kipp M, Gohring F, Ostendorp T, et al. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol, 2000, 20: 7480–7489, 11003645, 10.1128/MCB.20.20.7480-7489.2000, 1:CAS:528:DC%2BD3cXnt1aitr0%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Aravind L, Koonin E V. SAP-a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci, 2000, 25: 112–114, 10694879, 10.1016/S0968-0004(99)01537-6, 1:CAS:528:DC%2BD3cXhsFOisrs%3D

    Article  PubMed  CAS  Google Scholar 

  27. Kappes F, Scholten I, Richter N, et al. Functional domains of the ubiquitous chromatin protein DEK. Mol Cell Biol, 2004, 24: 6000–6010, 15199153, 10.1128/MCB.24.13.6000-6010.2004, 1:CAS:528:DC%2BD2cXls1aqtL0%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Devany M, Kappes F, Chen K M, et al. Solution NMR structure of the N-terminal domain of the human DEK protein. Protein Sci, 2008, 17: 205–215, 18227428, 10.1110/ps.073244108, 1:CAS:528:DC%2BD1cXhvVOntL8%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Waldmann T, Baack M, Richter N, et al. Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Res, 2003, 31: 7003–7010, 14627833, 10.1093/nar/gkg864, 1:CAS:528:DC%2BD3sXptlyktL4%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Waldmann T, Eckerich C, Baack M, et al. The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive su-percoils. J Biol Chem, 2002, 277: 24988–24994, 11997399, 10.1074/jbc.M204045200, 1:CAS:528:DC%2BD38XlsVWitL4%3D

    Article  PubMed  CAS  Google Scholar 

  31. Alexiadis V, Waldmann T, Andersen J, et al. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev, 2000, 14: 1308–1312, 10837023, 1:CAS:528:DC%2BD3cXjvFOgsbw%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Soares L M, Zanier K, Mackereth C, et al. Intron removal requires proofreading of U2AF/3′splice site recognition by DEK. Science, 2006, 312: 1961–1965, 16809543, 10.1126/science.1128659, 1:CAS:528:DC%2BD28XmsVahu7k%3D

    Article  PubMed  Google Scholar 

  33. Sammons M, Wan S S, Vogel N L, et al. Negative regulation of the RelA/p65 transactivation function by the product of the DEK proto-oncogene. J Biol Chem, 2006, 281: 26802–26812, 16829531, 10.1074/jbc.M600915200, 1:CAS:528:DC%2BD28XptlKnu7Y%3D

    Article  PubMed  CAS  Google Scholar 

  34. Hollenbach A D, McPherson C J, Mientjes E J, et al. Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci, 2002, 115: 3319–3330, 12140263, 1:CAS:528:DC%2BD38XmvVeqt7s%3D

    PubMed  CAS  Google Scholar 

  35. Faulkner N E, Hilfinger J M, Markovitz D M. Protein phosphatase 2A activates the HIV-2 promoter through enhancer elements that include the pets site. J Biol Chem, 2001, 276: 25804–25812, 11320078, 10.1074/jbc.M006454200, 1:CAS:528:DC%2BD3MXlsVKgtb8%3D

    Article  PubMed  CAS  Google Scholar 

  36. Wise-Draper T M, Allen H V, Thobe M N, et al. The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol, 2005, 79: 14309–14317, 16254365, 10.1128/JVI.79.22.14309-14317.2005, 1:CAS:528:DC%2BD2MXht1ShsLnP

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Cleary J, Sitwala K V, Khodadoust M S, et al. p300/CBP-associated factor drives DEK into interchromatin granule clusters. J Biol Chem, 2005, 280: 31760–31767, 15987677, 10.1074/jbc.M500884200, 1:CAS:528:DC%2BD2MXpslejsLw%3D

    Article  PubMed  CAS  Google Scholar 

  38. Sarno S, Reddy H, Meggio F, et al. Selectivity of 4,5,6,7-tetrabro-mobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (’casein kinase-2’). FEBS Lett, 2001, 496: 44–48, 11343704, 10.1016/S0014-5793(01)02404-8, 1:CAS:528:DC%2BD3MXjtlCit7o%3D

    Article  PubMed  CAS  Google Scholar 

  39. Tabbert A, Kappes F, Knippers R, et al. Hypophosphorylation of the architectural chromatin protein DEK in death-receptor-induced apoptosis revealed by the isotope coded protein label proteomic platform. Proteomics, 2006, 6: 5758–5772, 17001602, 10.1002/pmic.200600197, 1:CAS:528:DC%2BD28Xht1yqsbnJ

    Article  PubMed  CAS  Google Scholar 

  40. Gamble M J, Fisher R P. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol, 2007, 14: 548–555, 17529993, 10.1038/nsmb1248, 1:CAS:528:DC%2BD2sXmtVyjtb8%3D

    Article  PubMed  CAS  Google Scholar 

  41. Mor-Vaknin N, Punturieri A, Sitwala K, et al. The DEK nuclear autoantigen is a secreted chemotactic factor. Mol Cell Biol, 2006, 26: 9484–9496, 17030615, 10.1128/MCB.01030-06, 1:CAS:528:DC%2BD28XhtlemsLnK

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Strahl B D, Allis C D. The language of covalent histone modifications. Nature, 2000, 403: 41–45, 10638745, 10.1038/47412, 1:STN:280:DC%2BD3c7gt1arsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  43. Zhang Y, Ng H H, Erdjument-Bromage H, et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev, 1999, 13: 1924–1935, 10444591, 10.1101/gad.13.15.1924, 1:CAS:528:DyaK1MXltlGktbg%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature, 1997, 389: 349–352, 9311776, 10.1038/38664, 1:CAS:528:DyaK2sXmsVWntLk%3D

    Article  PubMed  CAS  Google Scholar 

  45. O’Neill L P, Turner B M. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. Embo J, 1995, 14: 3946–3957, 7664735

    PubMed  PubMed Central  Google Scholar 

  46. Clarke D J, O’Neill L P, Turner B M. Selective use of H4 acetylation sites in the yeast Saccharomyces cerevisiae. Biochem J, 1993, 294 557–561, 8373369, 1:CAS:528:DyaK3sXlvF2htLk%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Liu X, W L, Zhao K, et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature, 2008; 451: 846–850, 18273021, 10.1038/nature06546, 1:CAS:528:DC%2BD1cXhvVyms74%3D

    Article  PubMed  CAS  Google Scholar 

  48. Ko S I, Lee I S, Kim J Y, et al. Regulation of histone acetyltransferase activity of p300 and PCAF by proto-oncogene protein DEK. FEBS Lett, 2006, 580: 3217–3222, 16696975, 10.1016/j.febslet.2006.04.081, 1:CAS:528:DC%2BD28XltVKmsrY%3D

    Article  PubMed  CAS  Google Scholar 

  49. Lee K S, Kim D W, Kim J Y, et al., Caspase-dependent apoptosis induction by targeted expression of DEK in drosophila involves histone acetylation inhibition. J Cell Biochem, 2008, 103: 1283–1293, 17685435, 10.1002/jcb.21511, 1:CAS:528:DC%2BD1cXjtVyntbc%3D

    Article  PubMed  CAS  Google Scholar 

  50. Williams T, Admon A, Luscher B, et al. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev, 1988: 1557–1569

  51. Mitchell P J, Wang C, Tjian R. Positive and negative regulation of transcription in vitro: Enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell, 1987, 50: 847–861, 3040262, 10.1016/0092-8674(87)90512-5, 1:CAS:528:DyaL1cXltVCksw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  52. Hilger-Eversheim, K, Moser M, Schorle H, et al. Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene, 2000, 260: 1–12, 11137286, 10.1016/S0378-1119(00)00454-6, 1:CAS:528:DC%2BD3MXnslSqug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  53. Williams T, Tjian R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev, 1991, 5: 670–682, 2010091, 10.1101/gad.5.4.670, 1:CAS:528:DyaK3MXitVChsL0%3D

    Article  PubMed  CAS  Google Scholar 

  54. Campillos, M, Garcia M A, Valdivieso F, et al. Transcriptional activation by AP-2alpha is modulated by the oncogene DEK. Nucleic Acids Res, 2003, 31: 1571–1575, 12595566, 10.1093/nar/gkg247, 1:CAS:528:DC%2BD3sXit1yks74%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Mitchell P J, Timmons P M, Hebert J M, et al. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev, 1991, 5: 105–119, 1989904, 10.1101/gad.5.1.105, 1:CAS:528:DyaK3MXpvV2nsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  56. Vogelstein B, Kinzler K W. Cancer genes and the pathways they control. Nat Med, 2004, 10: 789–799, 15286780, 10.1038/nm1087, 1:CAS:528:DC%2BD2cXmtFWrt7o%3D

    Article  PubMed  CAS  Google Scholar 

  57. Vogelstein B, Lane D, Levine A J. Surfing the p53 network. Nature, 2000, 408: 307–310, 11099028, 10.1038/35042675, 1:CAS:528:DC%2BD3cXosVemtrY%3D

    Article  PubMed  CAS  Google Scholar 

  58. Levine A J. p53, the cellular gatekeeper for growth and division. Cell, 1997, 88: 323–331, 9039259, 10.1016/S0092-8674(00)81871-1, 1:CAS:528:DyaK2sXhtFahtLg%3D

    Article  PubMed  CAS  Google Scholar 

  59. Kim D W, Chae J I, Kim J Y, et al. Proteomic analysis of apoptosis related proteins regulated by proto-oncogene protein DEK. J Cell Biochem, 2009, 106: 1048–1059, 19229864, 10.1002/jcb.22083, 1:CAS:528:DC%2BD1MXkslCktLY%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongGang Hu.

Additional information

Contributed equally to this work

Supported by the Science and Technology Foundation of Beijing Jiaotong University (Grant Nos. 2006RC035 and 2007XM047).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, Y., Hu, H. & Peng, X. Progress in studies on the DEK protein and its involvement in cellular apoptosis. SCI CHINA SER C 52, 637–642 (2009). https://doi.org/10.1007/s11427-009-0088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0088-2

Keywords

Navigation