Skip to main content
Log in

The response of electron transport mediated by active NADPH dehydrogenase complexes to heat stress in the cyanobacterium Synechocystis 6803

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The electron-transport machinery in photosynthetic membranes is known to be very sensitive to heat. In this study, the rate of electron transport (ETR) driven by photosystem I (PSI) and photosystem II (PSII) during heat stress in the wild-type Synechocystis sp. strain PCC 6803 (WT) and its ndh gene inactivation mutants ΔndhB (M55) and ΔndhD1/ndhD2 (D1/D2) was simultaneously assessed by using the novel Dual-PAM-100 measuring system. The rate of electron transport driven by the photosystems (ETRPSs) in the WT, M55, and D1/D2 cells incubated at 30°C and at 55°C for 10 min was compared. Incubation at 55°C for 10 min significantly inhibited PSII-driven ETR (ETRPSII) in the WT, M55 and D1/D2 cells, and the extent of inhibition in both the M55 and D1/D2 cells was greater than that in the WT cells. Further, PSI-driven ETR (ETRPSI) was stimulated in both the WT and D1/D2 cells, and this rate was increased to a greater extent in the D1/D2 than in the WT cells. However, ETRPSI was considerably inhibited in the M55 cells. Analysis of the effect of heat stress on ETRPSs with regard to the alterations in the 2 active NDH-1 complexes in the WT, M55, and D1/D2 cells indicated that the active NDH-1 supercomplex and mediumcomplex are essential for alleviating the heat-induced inhibition of ETRPSII and for accelerating the heat-induced stimulation of ETRPSI, respectively. Further, it is believed that these effects are most likely brought about by the electron transport mediated by each of these 2 active NDH-1 complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Houghton J T, Ding Y, Griggs D J, et al. Climate changes 2001: the Scientific Basis. Cambridge: Cambridge University Press, 2001. 1–881

    Google Scholar 

  2. Sharkey T D. Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, Rubisco activation, reaction oxygen species, and the thermotolerance provided by isoprene. Plant Cell Environ, 2005, 28: 269–277, 10.1111/j.1365-3040.2005.01324.x, 1:CAS:528:DC%2BD2MXislKqs78%3D

    Article  CAS  Google Scholar 

  3. Berry J, Björkman O. Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol, 1980, 31: 491–543, 10.1146/annurev.pp.31.060180.002423

    Article  Google Scholar 

  4. Quinn P J, Williams W P. Environmentally induced changes in chloroplast membranes and their effects on photosynthesis. In: Barber J, Baker N R, eds. Photosynthetic Mechanisms and the Environment. Amsterdam: Elsevier, 1985. 1–47

    Google Scholar 

  5. Yordanov I, Dilova S, Petkova R, et al. Mechanisms of the temperature damage and acclimation of the photosynthetic apparatus. Photobiochem Photobiophys, 1986, 12: 147–155

    Google Scholar 

  6. Pospíšil P, Tyystjärvi E. Molecular mechanism of high-temperature-induced inhibition of acceptor side of photosystem II. Photosynth Res, 1999, 62: 55–66, 10.1023/A:1006369009170

    Article  Google Scholar 

  7. Havaux M, Greppin H, Strasser R J. Functioning of photosystem I and photosystem II in pea leaves exposed to heat stress in the presence or absence of light. Planta, 1991, 186: 88–98, 10.1007/BF00201502, 1:CAS:528:DyaK38XlsFOltw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  8. Havaux M. Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci, 1993, 94: 19–33, 10.1016/0168-9452(93)90003-I, 1:CAS:528:DyaK2cXhsF2is7c%3D

    Article  CAS  Google Scholar 

  9. Nixon P J, Gounaris K, Coomber S A, et al. psbG is not a photosystem two gene but may be an ndh gene. J Biol Chem, 1989, 264: 14129–14135, 2668282, 1:CAS:528:DyaK3cXitFWksrk%3D

    PubMed  CAS  Google Scholar 

  10. Steinmuller K. Nucleotide sequence and expression of the ndhH gene of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol, 1992, 18: 135–137, 1731965, 10.1007/BF00018466, 1:STN:280:By2C3Mbit1Y%3D

    Article  PubMed  CAS  Google Scholar 

  11. Prommeenate P, Lennon A M, Markert C, et al. Subunit composition of NDH-1 complexes of Synechocystis sp. PCC 6803: Identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. J Biol Chem, 2004, 279: 28165–28173, 15102833, 10.1074/jbc.M401107200, 1:CAS:528:DC%2BD2cXlt1CltLk%3D

    Article  PubMed  CAS  Google Scholar 

  12. Herranen M, Battchikova N, Zhang P, et al. Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol, 2004, 134: 470–481, 14730074, 10.1104/pp.103.032326, 1:CAS:528:DC%2BD2cXhtVans70%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Zhang P, Battchikova N, Jansen T, et al. Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp. PCC 6803. Plant Cell, 2004, 16: 3326–3340, 15548742, 10.1105/tpc.104.026526, 1:CAS:528:DC%2BD2MXhtVKltw%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Battchikova N, Zhang P, Rudd S, et al. Identification of NdhL and Ssl1690 (NdhO) in NDH-1L and NDH-1M complexes of Synechocystis sp. PCC 6803. J Biol Chem, 2005, 280: 2587–2595, 15548534, 10.1074/jbc.M410914200, 1:CAS:528:DC%2BD2MXmt1yhug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  15. Ohyama K, Fukuzawa H, Kohchi T, et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 1986, 322: 572–574, 10.1038/322572a0, 1:CAS:528:DyaL28Xlt1ymt7o%3D

    Article  CAS  Google Scholar 

  16. Kaneko T, Sato S, Kotani H, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res, 1996, 3: 109–136, 8905231, 10.1093/dnares/3.3.109, 1:CAS:528:DyaK28Xmtl2qsLc%3D

    Article  PubMed  CAS  Google Scholar 

  17. Ma W, Deng Y, Ogawa T, et al. Active NDH-1 complexes from the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Cell Physiol, 2006, 47: 1432–1436, 16980703, 10.1093/pcp/pcl008, 1:CAS:528:DC%2BD28Xht1WhtLrM

    Article  PubMed  CAS  Google Scholar 

  18. Deng Y, Ye J, Mi H. Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around photosystem I in the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol, 2003, 44(5): 534–540, 12773640, 10.1093/pcp/pcg067, 1:CAS:528:DC%2BD3sXkt1OhsLo%3D

    Article  PubMed  CAS  Google Scholar 

  19. Ma W, Deng Y, Mi H. Redox of plastoquinone pool regulates the expression and activity of NADPH dehydrogenase supercomplex in Synechocystis sp. strain PCC 6803. Curr Microbiol, 2008, 56: 189–193, 18000704, 10.1007/s00284-007-9056-x, 1:CAS:528:DC%2BD1cXks1alsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  20. Ma W, Mi H. Effect of exogenous glucose on the expression and activity of NADPH dehydrogenase complexes in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol Biochem, 2008, 46(8–9): 775–779, 18524609, 10.1016/j.plaphy.2008.04.019, 1:CAS:528:DC%2BD1cXpslWltbo%3D

    Article  PubMed  CAS  Google Scholar 

  21. Wang P, Ye J, Shen Y, et al. The role of chloroplast NAD(P)H dehydrogenase in protection of tobacco plant against heat stress. Sci China Ser C-Life Sci, 2006, 49(4): 311–321, 10.1007/s11427-006-2005-2, 1:CAS:528:DC%2BD28XhtVGitrzK

    Article  CAS  Google Scholar 

  22. Wang P, Duan W, Takabayashi A, et al. Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol, 2006, 141(2): 465–474, 16428601, 10.1104/pp.105.070490, 1:CAS:528:DC%2BD28Xmt1aktrg%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Ogawa T. A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC 6803. Proc Natl Acad Sci USA, 1991, 88: 4275–4279, 1903537, 10.1073/pnas.88.10.4275, 1:CAS:528:DyaK38XjsFegsg%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Ohkawa H, Pakrasi H B, Ogawa T. Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. J Biol Chem, 2000, 275(41): 31630–31634, 10906128, 10.1074/jbc.M003706200, 1:CAS:528:DC%2BD3cXnsFaqurs%3D

    Article  PubMed  CAS  Google Scholar 

  25. Allen M M. Simple conditions for growth of unicellular blue-green algae on plates. J Phycol, 1968, 4: 1–4, 10.1111/j.1529-8817.1968.tb04667.x, 1:CAS:528:DyaF1MXotVKl

    Article  CAS  Google Scholar 

  26. Ma W, Mi H. Expression and activity of type-1 NAD(P)H dehydrogenase at different growth phases of cyanobacterium, Synechocystis PCC 6803. Physiol Plant, 2005, 125: 135–140, 10.1111/j.1399-3054.2005.00555.x, 1:CAS:528:DC%2BD2MXhtVSksbnI

    Article  CAS  Google Scholar 

  27. Ma W, Chen L, Wei L, et al. Excitation energy transfer between photosystems in the cyanobacterium Synechocystis 6803. J Lumin, 2008, 128: 546–548, 10.1016/j.jlumin.2007.10.007, 1:CAS:528:DC%2BD2sXhsVSjsbnM

    Article  CAS  Google Scholar 

  28. Schreiber U, Bilger W, Hormann H, et al. Chlorophyll fluorescence as a diagnostic tool: Basis and some aspects of practical relevance. In: Raghavendra A S, eds. Photosynthesis: A Comprehensive Treatise. Cambridge: Cambridge University Press, 1998. 320–336

    Google Scholar 

  29. Klughammer C, Schreiber U. Measuring P700 absorbance changes in the near infrared spectral region with a dual wavelength pulse modulation system. In: Grab G, eds. Photosynthesis: Mechanisms and Effects. Vol V. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1998. 4357–4360

    Google Scholar 

  30. Ma W, Shi D, Wang Q, et al. Exogenous expression of the wheat chloroplastic fructose-1, 6-bisphosphatase gene enhances photosynthesis in the transgenic cyanobacterium, Anabaena PCC 7120. J Appl Phycol, 2005, 17(3): 273–280, 10.1007/s10811-005-4850-y, 1:CAS:528:DC%2BD2MXmtVSgtrY%3D

    Article  CAS  Google Scholar 

  31. Quiles M J. Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant Cell Environ, 2006, 29(8): 1463–1470, 16898010, 10.1111/j.1365-3040.2006.01510.x, 1:CAS:528:DC%2BD28XotlSmt7o%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WeiMin Ma or QuanXi Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30770175), the Natural Science Foundation of Shanghai Muncipality (Grant No. 07ZR14086), the Innovation Program of Shanghai Municipal Education Commission (Grant No. 08ZZ67), the Key Foundation Project of Shanghai (Grant No. 06JC14091), and the Leading Academic Discipline Project of Shanghai Municipal Education Commission (Grant No. J50401)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Wei, L. & Wang, Q. The response of electron transport mediated by active NADPH dehydrogenase complexes to heat stress in the cyanobacterium Synechocystis 6803. SCI CHINA SER C 51, 1082–1087 (2008). https://doi.org/10.1007/s11427-008-0139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0139-0

Keywords

Navigation