Skip to main content
Log in

Molecular characterization and expression analysis of caveolin-1 in pig tissues

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Members of the caveolin family played important roles during fundamental cellular processes, such as regulation of cell morphology, migration, and gene expression in muscle cells. In this study, caveolin-1 (Cav-1), one of the caveolins, was identified from longissimus dorsi muscle of Large Yorkshire pig and Chinese indigenous Lantang pig based on the results of mRNA differential display analysis. The deduced amino acids sequence of the porcine Cav-1 contained a caveolin domain, and was very conservative among different species. The Cav-1 mRNA was widely expressed in the eight tissues in this study, including heart, liver, kidney, encephalon, spleen, lung, longissimus dorsi muscle, and back fat, and the highest expression quantity was found in back fat of the two pig breeds. The expression quantity of porcine Cav-1 in back fat and longissimus dorsi muscle of Lantang pig was significantly higher than that of Large Yorkshire (P<0.01, and P<0.05, respectively). These results suggested that the Cav-1 might be a candidate gene for carcass traits, and might provide valuable information for understanding the mechanism of caveolae signaling in fat deposition by using the animal model of pig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parton R G. Caveolae and caveolins. Curr Opin Cell Biol, 1996, 8(4): 542–548, 8791446, 10.1016/S0955-0674(96)80033-0, 1:CAS:528:DyaK28Xks1Gquro%3D

    Article  CAS  Google Scholar 

  2. Grande-Garcia A, Echarri A, de Rooij J, et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol, 2007, 177(4): 683–694, 17517963, 10.1083/jcb.200701006, 1:CAS:528:DC%2BD2sXls1ygsrY%3D

    Article  CAS  Google Scholar 

  3. Fielding C J, Fielding P E. Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim Biophys Acta, 2003, 1610(2): 219–228, 12648776, 10.1016/S0005-2736(03)00020-8, 1:CAS:528:DC%2BD3sXitFantb8%3D

    Article  CAS  Google Scholar 

  4. Lisanti M P, Tang Z, Scherer P E, et al. Caveolae, transmembrane signalling and cellular transformation. Mol Membr Biol, 1995, 12: 121–124, 7767370, 10.3109/09687689509038506, 1:CAS:528:DyaK2MXmsFCjtb4%3D

    Article  CAS  Google Scholar 

  5. Okamoto T, Schlegel A, Scherer P E, et al. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem, 1998, 273(10): 5419–5422, 9488658, 10.1074/jbc.273.10.5419, 1:CAS:528:DyaK1cXhslejsbc%3D

    Article  CAS  Google Scholar 

  6. Williams T M, Lisanti M P. The Caveolin genes: From cell biology to medicine. Ann Med, 2004, 36: 584–595, 15768830, 10.1080/07853890410018899, 1:CAS:528:DC%2BD2MXpsFWlsg%3D%3D

    Article  CAS  Google Scholar 

  7. Engelman J A, Zhang X L, Lisanti M P. Sequence and detailed organization of the human caveolin-1 and-2 genes located near the D7S522 locus (7q31.1). Fed Eur Biochem Soc, 1999, 448(2–3): 221–230, 1:CAS:528:DyaK1MXisV2nsrk%3D

    Article  CAS  Google Scholar 

  8. Lin W W, Lin Y C, Chang T Y, et al. Caveolin-1 expression is associated with plaque formation in hypercholesterolemic rabbits. J Histochem Cytochem, 2006, 54(8): 897–904, 16585386, 10.1369/jhc.5A6869.2006, 1:CAS:528:DC%2BD28XntFWnu74%3D

    Article  CAS  Google Scholar 

  9. Kawabe J, Okumura S, Nathanson M A, et al. Caveolin regulates microtubule polymerization in the vascular smooth muscle cells. Biochem Biophys Res Commun, 2006, 342(1): 164–169, 16480946, 10.1016/j.bbrc.2006.01.125, 1:CAS:528:DC%2BD28Xhs1Wmur4%3D

    Article  CAS  Google Scholar 

  10. Sotgia F, Rui H, Bonuccelli G, et al. Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Res, 2006, 66(22): 10647–10651, 17108100, 10.1158/0008-5472.CAN-06-2805, 1:CAS:528:DC%2BD2sXivVyqs78%3D

    Article  CAS  Google Scholar 

  11. Trigatti B L, Anderson R G, Gerber G E. Identification of caveolin-1 as a fatty acid binding protein. Biochem Biophys Res Comm, 1999, 255(1): 34–39, 10082651, 10.1006/bbrc.1998.0123, 1:CAS:528:DyaK1MXhtlOrsrg%3D

    Article  CAS  Google Scholar 

  12. Pol A, Luetterforst R, Lindsay M, et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol, 2001, 152(5): 1057–1070, 11238460, 10.1083/jcb.152.5.1057, 1:CAS:528:DC%2BD3MXhslGmurY%3D

    Article  CAS  Google Scholar 

  13. Pol A, Martin S, Fernandez M A, et al. Dynamic and regulated association of caveolin with lipid bodies: Modulation of lipid body motility and function by a dominant negative mutant. Mol Biol Cell, 2004, 15(1): 99–110, 14528016, 10.1091/mbc.E03-06-0368, 1:CAS:528:DC%2BD2cXlsFSnsw%3D%3D

    Article  CAS  Google Scholar 

  14. Ring A, Le Lay S, Pohl J et al. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim Biophys Acta, 2006, 1761(4): 416–423, 16702023, 1:CAS:528:DC%2BD28XltFGjtrg%3D

    Article  CAS  Google Scholar 

  15. Fielding C J, Fielding P E. Cholesterol and caveolae: Structural and functional relationships. BiochIm Biophys Acta, 2000, 1529(1–3): 210–222, 11111090, 1:CAS:528:DC%2BD3cXosFCgsb8%3D

    Article  CAS  Google Scholar 

  16. Smart E J, Graf G A, McNiven M A, et al. Caveolins, liquid-ordered domains, and signal transduction. Mol Cel Biol, 1999, 19(11): 7289–7304, 1:CAS:528:DyaK1MXmvFeksbw%3D

    Article  CAS  Google Scholar 

  17. Fielding C J, Fielding P E. Cholesterol and caveolae: Structural and functional relationships. Biochim Biophys Acta, 2000, 1529: 210–222, 11111090, 1:CAS:528:DC%2BD3cXosFCgsb8%3D

    Article  CAS  Google Scholar 

  18. Kandror K V, Stephens J M, Pilch P F. Expression and compartmentalization of caveolin in adipose cells: Coordinate regulation with and structural segregation from GLUT4. J Cell Biol, 1995, 129(44): 999–1006, 7744970, 10.1083/jcb.129.4.999, 1:CAS:528:DyaK2MXlsFSktr0%3D

    Article  CAS  Google Scholar 

  19. Munoz P, Mora S, Sevilla L, et al. Expression and insulin-regulated distribution of caveolin in skeletal muscle. Caveolin does not colocalize with GLUT4 in intracellular membranes. J Biol Chem, 1996, 271(14): 8133–8139, 8626501, 10.1074/jbc.271.14.8133, 1:CAS:528:DyaK28XitFart7k%3D

    Article  CAS  Google Scholar 

  20. Li C S, Chen Y S, Wang C et al. Cloning and analysis of differentially expressed ESTs in swine muscle tissue. Sci China Ser C-Life Sci, 2006, 49(4): 342–348, 10.1007/s11427-006-2012-3, 1:CAS:528:DC%2BD28XhtVGitr3O

    Article  CAS  Google Scholar 

  21. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402–408, 11846609, 10.1006/meth.2001.1262, 1:CAS:528:DC%2BD38XhtFelt7s%3D

    Article  CAS  Google Scholar 

  22. Kim J, Adam R M, Solomon K R, et al. Involvement of cholesterol-rich lipid rafts in interleukin-6-induced neuroendocrine differentiation of LNCaP prostate cancer cells. Endocrinology, 2004, 145(2): 613–619, 14563701, 10.1210/en.2003-0772, 1:CAS:528:DC%2BD2cXovFSgtQ%3D%3D

    Article  CAS  Google Scholar 

  23. Fang P K, Solomon K R, Zhuang L, et al. Caveolin-1alpha and-1beta perform nonredundant roles in early vertebrate development. Am J Pathol, 2006, 169(6): 2209–2222, 17148682, 10.2353/ajpath.2006.060562, 1:CAS:528:DC%2BD2sXhvV2ntg%3D%3D

    Article  CAS  Google Scholar 

  24. Dasari A, Bartholomew J N, Volonte D, et al. Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res, 2006, 66(22): 10805–10814, 17108117, 10.1158/0008-5472.CAN-06-1236, 1:CAS:528:DC%2BD2sXivVyqsb4%3D

    Article  CAS  Google Scholar 

  25. Hnasko R, Frank P G, Ben-Jonathan N, et al. PV-1 is negatively regulated by VEGF in the lung of caveolin-1, but not caveolin-2, null mice. Cell Cycle, 2006, 5(17): 2012–2020, 16969073, 1:CAS:528:DC%2BD28XhtlWqsLjF

    Article  CAS  Google Scholar 

  26. Ahn M, Kim H, Matsumoto Y, et al. Increased expression of caveolin-1 and-2 in the hearts of Lewis rats with experimental autoimmune myocarditis. Autoimmunity, 2006, 39(6): 489–495, 17060028, 10.1080/08916930600929321, 1:CAS:528:DC%2BD28Xhtlagu7vN

    Article  CAS  Google Scholar 

  27. Kuo C T, Leiden J M. Transcriptional regulation of T lymphocyte development and function. Annu Rev Immunol, 1999, 17: 149–187, 10358756, 10.1146/annurev.immunol.17.1.149, 1:CAS:528:DyaK1MXjtVSrtb4%3D

    Article  CAS  Google Scholar 

  28. Cohen A W, Hnasko R, Schubert W, et al. Role of caveolae and caveolins in health and disease. Physiol Rev, 2004, 84(4): 1341–1379, 15383654, 10.1152/physrev.00046.2003, 1:CAS:528:DC%2BD2cXovVyltb0%3D

    Article  CAS  Google Scholar 

  29. Ortegren U, Yin L, Ost A, et al. Separation and characterization of caveolae subclasses in the plasma membrane of primary adipocytes; segregation of specific proteins and functions. FEBS J, 2006, 273(14): 3381–3392, 16803459, 10.1111/j.1742-4658.2006.05345.x

    Article  Google Scholar 

  30. Razani B, Combs T P, Wang X B, et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem, 2002, 277(10): 8635–8647, 11739396, 10.1074/jbc.M110970200, 1:CAS:528:DC%2BD38XitFymu70%3D

    Article  CAS  Google Scholar 

  31. Newcom D W, Stalder K J, Baas T J, et al. Breed differences and genetic parameters of myoglobin concentration in porcine longissimus muscle. J Anim Sci, 2004, 82: 2264–2268, 15318723, 1:CAS:528:DC%2BD2cXmtFeltLs%3D

    CAS  Google Scholar 

  32. Zuo B, Xiong Y Z, Deng C Y, et al. Polymorphism, linkage mapping and expression pattern of the porcine skeletal muscle glycogen synthase (GYS1) gene. Anim Genet, 2005, 36(3): 254–257, 15932409, 10.1111/j.1365-2052.2005.01286.x, 1:CAS:528:DC%2BD2MXlvVGns7k%3D

    Article  CAS  Google Scholar 

  33. Cameron P L, Ruffin J W, Bollag R, et al. Identification of caveolin and caveolin-related proteins in the brain. J Neurosci, 1997, 17(24): 9520–9535, 9391007, 1:CAS:528:DyaK2sXotVWgsL0%3D

    CAS  Google Scholar 

  34. Oka N, Yamamoto M, Schwencke C, et al. Caveolin interaction with protein kinase C. Isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J Biol Chem, 1997, 272(52): 33416–33421, 9407137, 10.1074/jbc.272.52.33416, 1:CAS:528:DyaK1cXhtVahtg%3D%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaoSheng Chen.

Additional information

Contributed equally to this work

Supported by National Natural Science Foundation of China (Grant NO. 30300249), Key Project of Chinese National Project for Fundamental Research and Development (973 Project) (Grant NO. 2004CB117506), and Group Project of Guangdong Natural Science Foundation (Grant NO. 04205804)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Mei, Y., Li, L. et al. Molecular characterization and expression analysis of caveolin-1 in pig tissues. SCI CHINA SER C 51, 655–661 (2008). https://doi.org/10.1007/s11427-008-0082-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0082-0

Keywords

Navigation