Skip to main content
Log in

Neuroprotection of aucubin in primary diabetic encephalopathy

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Hippocampal neuronal apoptosis accompanied by impairment of cognitive function occurs in primary diabetic encephalopathy. In this study, we investigated the neuroprotective mechanism of the iridoid glycoside, aucubin, using rats (n=8). Diabetes mellitus was induced in the rats by intraperitoneal (i.p.) injection of streptozotocin (60 mg/kg body weight). After 65 d, half of the DM rats were administered aucubin (5 mg/kg; i.p.) for 15 d, yielding treatment DM+A. A third group of rats received no streptozotocin or aucibin, and served as controls (CON). Encephalopathy was assessed using Y-maze behavioral testing. Rats were euthanized on Day 87, and hippocampi were excised for visual (light and transmission electron microscopic) and immunochemical (Western blot; immunohistochemical) assessments of the CA1 subfield for apoptosis and expression of regulatory proteins Bcl-2 and Bax. Treatment responses to all the parameters examined (body weight, plasma glucose, Y-maze error rates, pyramidal cell ultrastructure, proportions of apoptotic cells, levels of expression of Bcl-2 and Bax, and survivability of neuronal cells) were identical: there were highly significant differences between DM and CON groups (P<0.001), but the effects were significantly moderated (P<0.01) in DM+A compared with DM. These findings confirm the association of apoptosis with the encephalopathic effects of diabetes mellitus, and suggest a major role of the expression levels of Bcl-2 and Bax in the regulation of apoptotic cell death. All of the results suggest that aucubin could effectively inhibit apoptosis by modulating the expressions of Bcl-2 and Bax genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kramer L, Fasching P, Madl C, et al. Previous episodes of hypoglycemic coma are not associated with permanent cognitive brain dysfunction in IDDM patients on intensive insulin treatment. Diabetes, 1998, 47: 1909–1914, 9836523, 10.2337/diabetes.47.12.1909, 1:CAS:528:DyaK1cXnvVCru78%3D

    Article  Google Scholar 

  2. Li Z G, Zhang W X, Sima A A F. The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res, 2005, 1037: 12–24, 15777748, 10.1016/j.brainres.2004.11.063, 1:CAS:528:DC%2BD2MXitleqsb0%3D

    Article  Google Scholar 

  3. Lin Y H, Westenbroek C, Tie L, et al. Effects of glucose, insulin, and supernatant from pancreatic beta-cells on brain-pancreas relative protein in rat hippocampus. Neurochem Res, 2006, 31(12): 1417–1424, 17091403, 10.1007/s11064-006-9193-9, 1:CAS:528:DC%2BD28Xht1OhtrfE

    Article  Google Scholar 

  4. Uberall M A, Renner C, Edl S, et al. VEP and ERP abnormalities in children and adolescents with prepubertal onset of insulin-dependent diabetes mellitus. Neuropediatrics, 1996, 27: 88–93, 8737824, 10.1055/s-2007-973755, 1:STN:280:DyaK28zlsVejtQ%3D%3D

    Article  Google Scholar 

  5. Li Z G, Zhang W, Grunberger G, et al. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res, 2002, 946: 221–231, 12137925, 10.1016/S0006-8993(02)02887-1, 1:CAS:528:DC%2BD38Xls1ans7g%3D

    Article  Google Scholar 

  6. Trudeau F, Gagnon S, Massicotte G. Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol, 2004, 490: 177–186, 15094084, 10.1016/j.ejphar.2004.02.055, 1:CAS:528:DC%2BD2cXjt1Shtr8%3D

    Article  Google Scholar 

  7. Perouansky M. General anesthetics and long-term neurotoxicity. Handb Exp Pharmacol, 2008, 182: 143–157, 18175090, 10.1007/978-3-540-74806-9_7, 1:CAS:528:DC%2BD1cXjtVOls74%3D

    Article  Google Scholar 

  8. Lossi L, Gambino G. Apoptosis of the cerebellar neurons. Histol Histopathol, 2008, 23(3): 367–380, 18072093

    Google Scholar 

  9. Rizk N N, Myatt-Jones J, Rafols J, et al. Insulin like growth factor-1 (IGF-1) decreases ischemia-reperfusion induced apoptosis and necrosis in diabetic rats. Endocrine, 2007, 31(1): 66–71, 17709900, 10.1007/s12020-007-0012-0, 1:CAS:528:DC%2BD2sXotlCitbY%3D

    Article  Google Scholar 

  10. Thompson C B. Apoptosis in the pathogenesis and treatment of disease. Science, 1995, 267: 1456–1462, 7878464, 10.1126/science.7878464, 1:CAS:528:DyaK2MXktlClt70%3D

    Article  Google Scholar 

  11. Saravia F E, Beauquis J, Revsin Y, et al. Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment. Cell Mol Neurobiol, 2006, 26: 943–957, 16807785, 10.1007/s10571-006-9096-y, 1:CAS:528:DC%2BD28Xhtleksb3L

    Article  Google Scholar 

  12. An S J, Pae H O, Oh G S, et al. Inhibition of TNF-a, IL-1 h, and IL-6 productions and NF-kB activation in lipopolysaccharide-activated RAW 264.7 macrophages by catalposide, an iridoid glycoside isolated from Catalpa ovata G. Don (Bignoniaceae). Int Immunopharmacol, 2002, 2: 1173–1181, 12349954, 10.1016/S1567-5769(02)00085-1, 1:CAS:528:DC%2BD38Xmtlehsrw%3D

    Article  Google Scholar 

  13. Li Z G, Sima A A F. C-peptide and central nervous system complications in diabetes. Exp Diabesity Res, 2004, 5: 79–90, 15198373, 10.1080/15438600490424550, 1:CAS:528:DC%2BD2MXis1Slsbw%3D

    Article  Google Scholar 

  14. Schoenle E J, Schoenle D, Molinari L, et al. Impaired intellectual development in children with Type I diabetes: Association with HbA(1c), age at diagnosis and sex. Diabetologia, 2002, 45: 108–114, 11845229, 10.1007/s125-002-8250-6, 1:CAS:528:DC%2BD38Xitl2js7s%3D

    Article  Google Scholar 

  15. Sima A A F, Kamiya H, Li Z G. C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol, 2004, 490: 187–197, 15094085, 10.1016/j.ejphar.2004.02.056, 1:CAS:528:DC%2BD2cXjt1Shtrw%3D

    Article  Google Scholar 

  16. Scorrano L, Korsmeyer S J. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys Res Commun, 2003, 304: 437–444, 12729577, 10.1016/S0006-291X(03)00615-6, 1:CAS:528:DC%2BD3sXjt1Kisrw%3D

    Article  Google Scholar 

  17. Budinger G R, Tso M, McClintock D S, et al. Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins. J Biol Chem, 2002, 277: 15654–15660, 11877388, 10.1074/jbc.M109317200, 1:CAS:528:DC%2BD38Xjs1Wjs70%3D

    Article  Google Scholar 

  18. Gross A, McDonnell J M, Korsmeyer S J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999, 13: 1899–1911, 10444588, 10.1101/gad.13.15.1899, 1:CAS:528:DyaK1MXltlGktrg%3D

    Article  Google Scholar 

  19. Kelekar A, Thompson C B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol, 1998, 8: 324–330, 9704409, 10.1016/S0962-8924(98)01321-X, 1:CAS:528:DyaK1cXltlehurY%3D

    Article  Google Scholar 

  20. Bernini R, Iavarone C, Trogolo C. 1-O-β-D-glucopyranosyleucommiol, an iridoid glucoside from Aucuba japonica. Phytochem, 1984, 23: 1431–1433, 10.1016/S0031-9422(00)80480-X, 1:CAS:528:DyaL2MXkt1yhsA%3D%3D

    Article  Google Scholar 

  21. Bianco A, Iavarone C, Trogolo C. Structure of eucommiol, a new cyclopentenoid-tetraol from Eucommia ulmoides. Tetrahedron, 1974, 30: 4117–4121, 10.1016/S0040-4020(01)97394-6, 1:CAS:528:DyaE2MXhsFGnt7c%3D

    Article  Google Scholar 

  22. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Sydney: Academic Press, 1982

    Google Scholar 

  23. Suomi J, Sirén H, Wiedmer K W S K, et al. Isolation of aucubin and catalpol from Melitaea cinxia larvae and quantification by micellar electrokinetic capillary chromatography. Anal Chim Acta, 2001, 429: 91–99, 10.1016/S0003-2670(00)01266-6, 1:CAS:528:DC%2BD3MXkslGgtg%3D%3D

    Article  Google Scholar 

  24. Recio M C, Giner R M, Manez S, et al. Structural considerations on the iridoids as anti-inflammatory agents. Planta Med, 1994, 60: 232–234, 8073089, 10.1055/s-2006-959465, 1:STN:280:DyaK2czltlShtQ%3D%3D

    Article  Google Scholar 

  25. Kelliher K R, Baum M J. Nares occlusion eliminates heterosexual partner selectionwithout disrupting coitus in ferrets of both sexes. J Neurosci, 2001, 21: 5832–5840, 11466455, 1:CAS:528:DC%2BD3MXlsV2gtb8%3D

    Google Scholar 

  26. Maeda C Y, Fernandes T G, Timm H B, et al. Autonomic dysfunction in short-term experimental diabetes. Hypertension, 1995, 26: 1100–1104, 7498976, 1:STN:280:DyaK28%2FovVyqtw%3D%3D

    Article  Google Scholar 

  27. Barber A J, Lieth E, Khin S A, et al. Neural apoptosis in the retina during experimental and human diabetes, Early onset and effect of insulin. J Clin Invest, 1998, 102: 783–791, 9710447, 10.1172/JCI2425, 1:CAS:528:DyaK1cXlsFaqsrg%3D

    Article  Google Scholar 

  28. Carson D A, Ribeiro J M. Apoptosis and disease. Lancet, 1993, 341: 1251–1254, 8098400, 10.1016/0140-6736(93)91154-E, 1:STN:280:DyaK3s3mtFSqsQ%3D%3D

    Article  Google Scholar 

  29. Arroba A I, Lechuga-Sancho A M, Frago L M, et al. Cell-specific expression of X-linked inhibitor of apoptosis in the anterior pituitary of streptozotocin-induced diabetic rats. J Endocrinol, 2007, 192(1): 215–227, 17210759, 10.1677/joe.1.06985, 1:CAS:528:DC%2BD2sXktlKqur0%3D

    Article  Google Scholar 

  30. Aszalós Z. Cerebral complications of diabetes mellitus. Orv Hetil, 2007, 148(50): 2371–2376, 18055361, 10.1556/OH.2007.28221

    Article  Google Scholar 

  31. Stefanis L, Burke R E, Greene L A. Apoptosis in neurodegenerative disorders. Curr Opin Neurol, 1997, 10: 299–305, 9266153, 10.1097/00019052-199708000-00004, 1:STN:280:DyaK2svhtFWlsg%3D%3D

    Article  Google Scholar 

  32. Li Z G, Zhang W, Sima A A F. C-peptide enhances insulin-mediated cell growth and protection against high glucose induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev, 2003, 19: 375–385, 12951645, 10.1002/dmrr.389, 1:CAS:528:DC%2BD3sXotl2ltLw%3D

    Article  Google Scholar 

  33. Ainge J A, Tamosiunaite M, Woergoetter F, et al. Hippocampal CA1 place cells encode intended destination on a maze with multiple choice points. J Neurosci, 2007, 27(36): 9769–9779, 17804637, 10.1523/JNEUROSCI.2011-07.2007, 1:CAS:528:DC%2BD2sXhtVKlsrzO

    Article  Google Scholar 

  34. González-Burgos I, Letechipía-Vallejo G, López-Loeza E, et al. Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats. Neurosci Lett, 2007, 423(2): 162–166, 17706355, 10.1016/j.neulet.2007.06.050, 1:CAS:528:DC%2BD2sXpt1Shsb8%3D

    Article  Google Scholar 

  35. Thomas B F, Gilliam A F, Burch D F, et al. Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther, 1998, 285: 285–292, 9536023, 1:CAS:528:DyaK1cXisVCqsLY%3D

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongPing Xu.

Additional information

Support by the National Natural Science Foundation of China (Grant No. 30371053), the National Outstanding Youth Foundation of China (Grant No. 30125034), and the Scientific and Technological Plan Project of Dalian City (Grant No. 2003B3NS024)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, H., Jin, L., Jin, L. et al. Neuroprotection of aucubin in primary diabetic encephalopathy. SCI CHINA SER C 51, 495–502 (2008). https://doi.org/10.1007/s11427-008-0069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0069-x

Keywords

Navigation