Skip to main content

Advertisement

Log in

Minocycline reverses diabetes-associated cognitive impairment in rats

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Minocycline a tetracycline antibiotic is known for anti-inflammatory and neuroprotective actions. Here we determine the therapeutic potential of minocycline against type 2 diabetes associated cognitive decline in rats.

Methods

High fat diet (HFD) and low dose streptozotocin (STZ; 25 mg/kg) were used to induce diabetes in Sprague-Dawley rats. Fasting blood glucose and haemoglobin (Hb) A1c were measured in these animals. Cognitive parameters were measured using passive avoidance and elevated plus maze test. Hippocampal Acetylcholine esterase (AchE), reduced glutathione (GSH), cytokines, chemokine levels were measured and histopathological evaluations were conducted. The diabetic animals were then given minocycline (50 mg/kg; 15 days) and the above parameters were reassessed. MTT and Lactate dehydrogenase (LDH) assays were conducted on neuronal cells in the presence of glucose with or without minocycline treatment.

Results

We induced diabetes using HFD and STZ in these animals. Animals showed high fasting blood glucose levels (>245 mg/dl) and HbA1c compared to control animals. Diabetes significantly lowered step down latency and increased transfer latency. Diabetic animals showed significantly higher AchE, Tumor necrosis factor (TNF)-α, Interleukin (IL)-1β and Monocyte chemoattractant protein (MCP)-1 and lower GSH levels and reduced both CA1 and CA3 neuronal density compared to controls. Minocycline treatment partially reversed the above neurobehavioral and biochemical changes and improved hippocampal neuronal density in diabetic animals. Cell line studies showed glucosemediated neuronal death, which was considerably reversed upon minocycline treatment.

Conclusions

Minocycline, primarily by its anti-inflammatory and antioxidant actions prevented hippocampal neuronal loss thus partially reversing the diabetes-associated cognitive decline in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van den Berg E, Kloppenborg RP, Kessels RP, Kappelle LJ, Biessels GJ. Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition. BBA-Mol Basis Dis 2009;1792:470–81.

    Article  CAS  Google Scholar 

  2. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. Brit Med J 2000;321(7255):199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alexandraki KI, Piperi C, Ziakas PD, Apostolopoulos NV, Makrilakis K, Syriou V, et al. Cytokine secretion in long-standing diabetes mellitus type 1 and 2: associations with low-grade systemic inflammation. J Clin Immunol 2008;28(4):314–21.

    Article  CAS  PubMed  Google Scholar 

  4. Frances DEA, Ingaramo PI, Ronco MT, Carnovale CE. Diabetes, an inflammatory process: oxidative stress and TNF-alpha involved in hepatic complication. J Biomed Sci 2013;6(6):645–53.

    Google Scholar 

  5. Vikram A, Tripathi DN, Kumar A, Singh S. Oxidative stress and inflammation in diabetic complications. Int J Endocrinol 2014;2014:.

  6. Kampoli A-M, Tousoulis D, Briasoulis A, Latsios G, Papageorgiou N, Stefanadis C. Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr Pharm Des 2011;17(37):4147–58.

    Article  CAS  PubMed  Google Scholar 

  7. Helmersson J, Vessby B, Larsson A, Basu S. Association of type 2 diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an elderly population. Circulation 2004;109(14):1729–34.

    Article  CAS  PubMed  Google Scholar 

  8. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 2004;63(4):582–92.

    Article  CAS  PubMed  Google Scholar 

  9. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products. Circulation 2006;114(6):597–605.

    Article  CAS  PubMed  Google Scholar 

  10. Negrean M, Stirban A, Stratmann B, Gawlowski T, Horstmann T, Götting C, et al. Effects of low-and high-advanced glycation endproduct meals on macro-and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr 2007;85(5):1236–43.

    Article  CAS  PubMed  Google Scholar 

  11. Biessels G-J, Kappelle A, Bravenboer B, Erkelens D, Gispen W. Cerebral function in diabetes mellitus. Diabetologia 1994;37(7):643–50.

    Article  CAS  PubMed  Google Scholar 

  12. Hartge MM, Unger T, Kintscher U. The endothelium and vascular inflammation in diabetes. Diab Vasc Dis Res 2007;4(2):84–8.

    Article  PubMed  Google Scholar 

  13. Nagayach A, Patro N, Patro I. Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab Brain Dis 2014;29(3):747–61.

    Article  CAS  PubMed  Google Scholar 

  14. Creager M, Goldin A, Beckman J, Schmidt A. Advanced glycation end products-Sparking the development of diabetic vascular injury. Circulation 2006;114:597–605.

    Article  CAS  PubMed  Google Scholar 

  15. Giulian D, Li J, Bartel S, Broker J, Li X, Kirkpatrick JB. Cell surface morphology identifies microglia as a distinct class of mononuclear phagocyte. J Neurosci 1995;15(11):7712–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Streit WJ, Graeber MB, Kreutzberg GW. Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J Neuroimmunol 1989;21(2):117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Streit WJ, Kreutzberg GW. Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 1988;268(2):248–63.

    Article  CAS  PubMed  Google Scholar 

  18. Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev 1995;20(3):269–87.

    Article  CAS  PubMed  Google Scholar 

  19. Colton CA, Gilbert DL. Production of superoxide anions by a CNS macrophage. the microglia. FEBS lett. 1987;223(2):284–8.

    Article  CAS  PubMed  Google Scholar 

  20. Banati R, Rothe G, Valet G, Kreutzberg G. Detection of lysosomal cysteine proteinases in microglia: flow cytometric measurement and histochemical localization of cathepsin B and L. Glia 1993;7(2):183–91.

    Article  CAS  PubMed  Google Scholar 

  21. Shen WH, Zhou J-H, Broussard SR, Johnson RW, Dantzer R, Kelley KW. Tumor necrosis factor α inhibits insulin-like growth factor I-induced hematopoietic cell survival and proliferation. Endocrinology 2004;145(7):3101–5.

    Article  CAS  PubMed  Google Scholar 

  22. Banerjee S, Walseth TF, Borgmann K, Wu L, Bidasee KR, Kannan MS, et al. CD38/cyclic ADP-ribose regulates astrocyte calcium signaling: implications for neuroinflammation and HIV-1-associated dementia. J Neuroimmune Pharmacol 2008;3(3):154.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Venters HD, Tang Q, Liu Q, VanHoy RW, Dantzer R, Kelley KW. A new mechanism of neurodegeneration: a proinflammatory cytokine inhibits receptor signaling by a survival peptide. P Natl Acad Sci-Biol. 1999;96(17):9879–84.

    Article  CAS  Google Scholar 

  24. Reed M, Meszaros K, Entes L, Claypool M, Pinkett J, Gadbois T, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolis 2000;49(11):1390–4.

    Article  CAS  Google Scholar 

  25. Srinivasan K, Viswanad B, Asrat L, Kaul C, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 2005;52(4):313–20.

    Article  CAS  PubMed  Google Scholar 

  26. Greenwood CE, Winocur G. Learning and memory impairment in rats fed a high saturated fat diet. Behav Neural Biol 1990;53(1):74–87.

    Article  CAS  PubMed  Google Scholar 

  27. Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Corrêa M, et al. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 2009;610(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  28. Ghareeb DA, Hussen HM. Vanadium improves brain acetylcholinesterase activity on early stage alloxan-diabetic rats. Neurosci Lett 2008;436(1):44–7.

    Article  CAS  PubMed  Google Scholar 

  29. Pari L, Latha M. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipid peroxidation in STZ diabetic male Wistar rats. BMC Complement Altern Med 2004;4(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McNeilly AD, Williamson R, Sutherland C, Balfour DJ, Stewart CA. High fat feeding promotes simultaneous decline in insulin sensitivity and cognitive performance in a delayed matching and non-matching to position task. Behav Brain Res 2011;217(1):134–41.

    Article  CAS  PubMed  Google Scholar 

  31. Leite LM, Carvalho AGG, Ferreira PLT, Pessoa IX, Gonçalves DO, de Araújo Lopes A, et al. Anti-inflammatory properties of doxycycline and minocycline in experimental models: an in vivo and in vitro comparative study. Inflammopharmacology 2011;19(2):99–110.

    Article  CAS  PubMed  Google Scholar 

  32. Tikka T, Fiebich BL, Goldsteins G, Keinänen R, Minocycline Koistinaho J. A tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 2001;21(8):2580–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adlard PA, Engesser-Cesar C, Cotman CW. Mild stress facilitates learning and exercise improves retention in aged mice. Exp Gerontol 2011;46(1):53–9.

    Article  PubMed  Google Scholar 

  34. Blum D, Chtarto A, Tenenbaum L, Brotchi J, Levivier M. Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis 2004;17(3):359–66.

    Article  CAS  PubMed  Google Scholar 

  35. Swanson RA, Ying W, Kauppinen TM. Astrocyte influences on ischemic neuronal death. Curr Mol Med 2004;4(2):193–205.

    Article  CAS  PubMed  Google Scholar 

  36. Cl Gabriel, Justicia C, Camins A, Planas AM. Activation of nuclear factor-κB in the rat brain after transient focal ischemia. Mol Brain Res. 1999;65(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  37. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005;54(5):1559–65.

    Article  CAS  PubMed  Google Scholar 

  38. Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci-Biol 1999;96(23):13496–500.

    Article  Google Scholar 

  39. Hunter CL, Bachman D, Granholm AC. Minocycline prevents cholinergic loss in a mouse model of Down’s syndrome. Ann Neurol 2004;56(5):675–88.

    Article  CAS  PubMed  Google Scholar 

  40. Xue M, Mikliaeva EI, Casha S, Zygun D, Demchuk A, Yong VW. Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice. Am J Pathol 2010;176(3):1193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baydas G, Nedzvetskii VS, Nerush PA, Kirichenko SV, Yoldas T. Altered expression of NCAM in hippocampus and cortex may underlie memory and learning deficits in rats with streptozotocin-induced diabetes mellitus. Life Sci 2003;73:1907–16.

    Article  CAS  PubMed  Google Scholar 

  42. Dhingra DM, Parle M, Kulkarni SK. Memory enhancing activity of Glycyrrhiza glabra in mice. J Ethnopharmacol 2004;91(2–3):361–5.

    Article  PubMed  Google Scholar 

  43. Pocernich CB, Butterfield DA. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. BBA-Mol Basis Dis. 2012;1822(5):625–30.

    Article  CAS  Google Scholar 

  44. Sarter M, Bruno JP. Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Rev 1997;23(1):28–46.

    Article  CAS  PubMed  Google Scholar 

  45. Ellman GL, Courtney KD, Andres V. Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7(2):88–95.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang JM, An J. Cytokines, inflammation and pain. Int Anesthesiol Clin 2007;45(2):27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 2008;18(11):1085–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim SO, et al. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem 2010;114(6):1581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Uranga RM, Bruce-Keller AJ, Morrison CD, Fernandez-Kim SO, Ebenezer PJ, Zhang L, et al. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem 2010;114(2):344–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kalmijn S. Fatty acid intake and the risk of dementia and cognitive decline: a review of clinical and epidemiological studies. J Nutr Health Aging 2000;4(4):202–7.

    CAS  PubMed  Google Scholar 

  51. Uranga RM, Keller JN. Diet and age interactions with regards to cholesterol regulation and brain pathogenesis. Curr Gerontol Geriatr Res 2010;219683.

  52. Mehta BK, Banerjee S. Characterization of cognitive impairment in type 2 diabetic rats. Indian J Pharm Sci 2017;79(5):785–93.

    Article  Google Scholar 

  53. Beaty HN. Rifampin and minocycline in meningococcal disease. Rev Infect Dis 1983;5(Supplement 3):S451–58.

    Article  PubMed  Google Scholar 

  54. Fraser A, Gafter-Gvili A, Paul M, Leibovici L. Prophylactic use of antibiotics for prevention of meningococcal infections: systematic review and meta-analysis of randomised trials. Eur J Clin Microbiol 2005;24(3):172–81.

    Article  CAS  Google Scholar 

  55. Raghavendra V, Tanga F, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther 2003;306(2):624–30.

    Article  CAS  PubMed  Google Scholar 

  56. Kielian T, Esen N, Liu S, Phulwani NK, Syed MM, Phillips N, et al. Minocycline modulates neuroinflammation independently of its antimicrobial activity in Staphylococcus aureus-induced brain abscess. Am J Pathol 2007;171(4):1199–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim H-S, Suh Y-H. Minocycline and neurodegenerative diseases. Behav Brain Res 2009;196(2):168–79.

    Article  CAS  PubMed  Google Scholar 

  58. Zink MC, Uhrlaub J, DeWitt J, Voelker T, Bullock B, Mankowski J, et al. Neuroprotective and anti-human immunodeficiency virus activity of minocycline. JAMA 2005;293(16):2003–11.

    Article  CAS  PubMed  Google Scholar 

  59. Kou W, Banerjee S, Eudy J, Smith LM, Persidsky R, Borgmann K, et al. CD38 regulation in activated astrocytes: implications for neuroinflammation and HIV-1 brain infection. J Neurosci Res 2009;87(10):2326–39.

    Article  CAS  PubMed  Google Scholar 

  60. Tangpong J, Sompol P, Vore M, Clair WS, Butterfield D, Clair DS. Tumor necrosis factor alpha-mediated nitric oxide production enhances manganese superoxide dismutase nitration and mitochondrial dysfunction in primary neurons: an insight into the role of glial cells. Neuroscience 2008;151(2):622–9.

    Article  CAS  PubMed  Google Scholar 

  61. K-j Min, Jou I, Joe E. Plasminogen-induced IL-1β and TNF-α production in microglia is regulated by reactive oxygen species. Biochem Bioph Res Co 2003;312(4):969–74.

    Article  CAS  Google Scholar 

  62. Conti G, Scarpini E, Baron P, Livraghi S, Tiriticco M, Bianchi R, et al. Macrophage infiltration and death in the nerve during the early phases of experimental diabetic neuropathy: a process concomitant with endoneurial induction of IL-1β and p75NTR. J Neurol Sci 2002;195(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  63. Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005;115(1):71–83.

    Article  CAS  PubMed  Google Scholar 

  64. Mukherjee A, Mehta BK, Sen KK, Banerjee S. Metabolic syndrome-associated cognitive decline in mice: role of minocycline. Indian J Pharmacol 2018;50(2):61–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kraus RL, Pasieczny R, Lariosa-Willingham K, Turner MS, Jiang A, Trauger JW. Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J Neurochem 2005;94(3):819–27.

    Article  CAS  PubMed  Google Scholar 

  66. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG. Microglia potentiate damage to blood-brain barrier constituents. Stroke 2006;37(4):1087–93.

    Article  PubMed  Google Scholar 

  67. Bigl K, Schmitt A, Meiners I, Münch G, Arendt T. Comparison of results of the CellTiter Blue, the tetrazolium (3-[4, 5-dimethylthioazol-2-yl]-2, 5-diphenyl tetrazolium bromide), and the lactate dehydrogenase assay applied in brain cells after exposure to advanced glycation endproducts. Toxicol In Vitro 2007;21(5):962–71.

    Article  CAS  PubMed  Google Scholar 

  68. Lobner D. Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? J Neurosci Meth. 2000;96(2):147–52.

    Article  CAS  Google Scholar 

  69. Kupsch K, Hertel S, Kreutzmann P, Wolf G, Wallesch CW, Siemen D, et al. Impairment of mitochondrial function by minocycline. FEBS J 2009;276(6):1729–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugato Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, B.K., Banerjee, S. Minocycline reverses diabetes-associated cognitive impairment in rats. Pharmacol. Rep 71, 713–720 (2019). https://doi.org/10.1016/j.pharep.2019.03.012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2019.03.012

Keywords

Navigation