Skip to main content
Log in

PrP mutants with different numbers of octarepeat sequences are more susceptible to the oxidative stress

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

One of the physiological functions of cellular prion protein (PrPC) is believed to work as a cellular resistance to oxidative stress, in which the octarepeats region within PrP plays an important role. However, the detailed mechanism is less clear. In this study, the expressing plasmids of wild-type PrP (PrP-PG5) and various PrP mutants containing 0 (PrP-PG0), 9 (PrP-PG9) and 12 (PrP-PG12) octarepeats were generated and PrP proteins were expressed both in E. coli and in mammalian cells. Protein aggregation and formation of carbonyl groups were clearly seen in the recombinant PrPs expressed from E. coli after treatment of H2O2. MTT and trypan blue staining assays revealed that the cells expressing the mutated PrPs within octarepeats are less viable than the cells expressing wild-type PrP. Statistically significant high levels of intracellular free radicals and low levels of glutathione peroxidase were observed in the cells transfected with plasmids containing deleted or inserted octarepeats. Remarkably more productions of carbonyl groups were detected in the cells expressing PrPs with deleted and inserted octarepeats after exposing to H2O2. Furthermore, cells expressing wild-type PrP showed stronger resistant activity to the challenge of H2O2 at certain extent than the mutated PrPs and mock. These data provided the evidences that the octarepeats number within PrP is critical for maintaining its activity of antioxidation. Loss of its protective function against oxidative stress may be one of the possible pathways for the mutated PrPs to involve in the pathogenesis of familial Creutzfeldt-Jacob diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prusiner S B. Prions. Proc Natl Acad Sci USA, 1998, 95: 13363–13373, 9811807, 10.1073/pnas.95.23.13363, 1:CAS:528:DyaK1cXnsVGhsbY%3D

    Article  CAS  Google Scholar 

  2. Prusiner S B, Groth D, Serban A, et al. Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci USA, 1993, 90: 10608–10612, 7902565, 10.1073/pnas.90.22.10608, 1:CAS:528:DyaK2cXnsVGitw%3D%3D

    Article  CAS  Google Scholar 

  3. Goldfarb L G, Brown P, McCombie W R, et al. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc Natl Acad Sci USA, 1991, 88: 10926–10930, 1683708, 10.1073/pnas.88.23.10926, 1:CAS:528:DyaK38XotFCnug%3D%3D

    Article  CAS  Google Scholar 

  4. Poulter M, Baker H F, Frith C D, et al. Inherited prion disease with 144 base pair insertion. Genealogical Molecular Studies-Brain, 1992, 115: 675–685

    Google Scholar 

  5. Owen F, Poulter M, Shah T, et al. An in-frame insertion in the prion protein gene in familial Creutzfeldt-Jakob disease. Brain Res Mol Brain Res, 1990, 7: 273–276, 2159587, 10.1016/0169-328X(90)90038-F, 1:CAS:528:DyaK3cXktVWnsrg%3D

    Article  CAS  Google Scholar 

  6. Cochran E J, Bennett D A, Cervenáková L, et al. Familial Creutzfeldt-Jakob disease with a five-repeat octapeptide insert mutation. Neurology, 1996, 47: 727–733, 8797471, 1:CAS:528:DyaK28XmtFWisbs%3D

    Article  CAS  Google Scholar 

  7. Horiuchi M, Caughey B. Prion protein interconversions and the transmissible spongiform encephalopathies. Structure, 1999, 7: 231–240, 10.1016/S0969-2126(00)80049-0

    Article  Google Scholar 

  8. Griffit J S. Self-replication and scrapie. Nature, 1967, 215(105): 1043–1044, 10.1038/2151043a0

    Article  Google Scholar 

  9. Huang Z, Prusiner S B, Cohen F E. Scrapie prions: a three-dimensional model of an infectious fragment. Fold Des, 1996, 1(1): 13–19, 9079359, 10.1016/S1359-0278(96)00007-7, 1:CAS:528:DyaK28XktlKisbs%3D

    Article  CAS  Google Scholar 

  10. Hornshaw M P, McDermott J R, Candy J M, et al. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: Structural studies using synthetic peptides. Biochem Biophys Res Commun, 1995, 214: 621–629, 10.1006/bbrc.1995.1233

    Article  Google Scholar 

  11. Brown D R, Qin K, Herms J W, et al. The cellular prion protein binds copper in vivo. Nature, 1997c, 390: 684–687, 9414160, 10.1038/37733, 1:CAS:528:DyaK1cXpvFKj

    Article  CAS  Google Scholar 

  12. Miura T, Hori-I A, Takeuchi H, et al. Metal-dependent alpha-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett, 1996, 396(2–3): 248–252, 8914996, 10.1016/0014-5793(96)01104-0, 1:CAS:528:DyaK28Xms1eiurY%3D

    Article  CAS  Google Scholar 

  13. Pauly P C, Harris D A. Copper stimulates endocytosis of the prion protein. J Biol Chem, 1998, 273: 33107–33110, 9837873, 10.1074/jbc.273.50.33107, 1:CAS:528:DyaK1MXjtQ%3D%3D

    Article  CAS  Google Scholar 

  14. Brown D R, Besinger A. Prion protein expression and superoxide dismutase activity. Biochem J, 1998, 334: 423–429, 9716501, 1:CAS:528:DyaK1cXmtFOlsb0%3D

    Article  CAS  Google Scholar 

  15. Markesbery W R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med, 1997, 23: 134–137, 9165306, 10.1016/S0891-5849(96)00629-6, 1:CAS:528:DyaK2sXjtlaqs7o%3D

    Article  CAS  Google Scholar 

  16. Hensley K, Hall N, Subramaniam R, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem, 1995, 65: 2146–2156, 7595501, 1:CAS:528:DyaK2MXovFGmtLY%3D, 10.1046/j.1471-4159.1995.65052146.x

    Article  CAS  Google Scholar 

  17. Lee D W, Sohn H O, Lim H B, et al, Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radic Res, 1999, 30: 499–507, 10400462, 10.1080/10715769900300541, 1:CAS:528:DyaK1MXktFWltLo%3D

    Article  CAS  Google Scholar 

  18. Wong B S, Chen S G, Monica C, et al. Aberrant metal binding by prion protein in human prion disease. J Neurochem, 2001, 78: 1400–1408, 11579148, 10.1046/j.1471-4159.2001.00522.x, 1:CAS:528:DC%2BD3MXnt12isL4%3D

    Article  CAS  Google Scholar 

  19. Gao J M, Gao C, Han J, et al, Dynamic analyses of PrP and PrPSc in brain tissues of golden hamsters infected with scrapie strain 263K revealed various PrP forms. Biomed Environ Sci, 2004, 17: 8–20, 15202859

    Google Scholar 

  20. Gao C, Lei Y J, Han J, et al, Recombinant neural protein PrP can bind with both recombinant and native apolipoprotein E in vitro. Acta Biochim Biophys Sin, 2006, 38: 593–601, 16953297, 10.1111/j.1745-7270.2006.00209.x, 1:CAS:528:DC%2BD28XhtFSjs7jI

    Article  CAS  Google Scholar 

  21. Wang X F, Guo Y J, Zhang B Y, et al, Creutzfeldt-Jakob disease in a Chinese patient with a novel seven extra-repeat insertion in PRNP. J Neurol Neurosur Ps, 2007, 78(2): 201–203, 10.1136/jnnp.2006.09433, 1:STN:280:DC%2BD2s%2Fjt1OlsA%3D%3D

    Article  CAS  Google Scholar 

  22. Chen L, Yang Y, Han J, et al. Removal of the glycosylation of prion protein provoke apoptosis in SF126. J Biochem Mol Biol, 2007, 30: 662–629

    Article  Google Scholar 

  23. Han J, Zhang J, Yao H L, et al, Study on interaction between microtubule associated protein tau and prion protein. Sci China Ser C-Life Sci, 2006, 49: 473–479, 10.1007/s11427-006-2019-9, 1:CAS:528:DC%2BD2sXktlWktA%3D%3D

    Article  CAS  Google Scholar 

  24. Brown D R, Schulz-Schaeffer W J, Schmidt B, et al. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol, 1997, 146(1): 104–112, 9225743, 10.1006/exnr.1997.6505, 1:CAS:528:DyaK2sXkslOit7o%3D

    Article  CAS  Google Scholar 

  25. Kuwahara C, Takeuchi A M, Nishimura T, et al. Prions prevent neuronal cell-line death. Nature, 1999, 400(6741): 225–226, 10421360, 10.1038/22241, 1:CAS:528:DyaK1MXkvFWmsbk%3D

    Article  CAS  Google Scholar 

  26. White A R, Collins S J, Maher F, et al. Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am J Pathol, 1999, 155: 1723–1730, 10550328, 1:CAS:528:DyaK1MXnvVKisb4%3D

    Article  CAS  Google Scholar 

  27. Owen F, Poulter M, Lofthouse R, et al. Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet, 1989, 1(8628): 51–52, 2563037, 10.1016/S0140-6736(89)91713-3, 1:STN:280:DyaL1M%2Fps1Whtg%3D%3D

    Article  CAS  Google Scholar 

  28. Yin S, Yu S, Li C, et al. Prion proteins with insertion mutations have altered N-terminal conformation and increased ligand binding activity and are more susceptible to oxidative attack. J Biol Chem, 2006, 281(16): 10698–10705, 16478730, 10.1074/jbc.M511819200, 1:CAS:528:DC%2BD28XjsFSqtbs%3D

    Article  CAS  Google Scholar 

  29. Requena J R, Groth D, Legname G, et al, Copper-catalyzed oxidation of the recombinant SHa(29-231) prion protein. Proc Natl Acad Sci USA, 2001, 98(13): 7170–7175, 11404462, 10.1073/pnas.121190898, 1:CAS:528:DC%2BD3MXkslWmt7w%3D

    Article  CAS  Google Scholar 

  30. Freedman J H, Ciriolo M R, Peisach J. The role of glutathionein copper metabolism and toxicity. J Biol Chem, 1989, 264: 5598–5605, 2564391, 1:CAS:528:DyaL1MXhvVOnur0%3D

    CAS  Google Scholar 

  31. Hyslop P A, Zhang Z, Pearson D V, et al, Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: Correlation with the cytotoxic potential of H2O2in vitro. Brain Res, 1995, 671(2): 181–186, 7743206, 10.1016/0006-8993(94)01291-O, 1:CAS:528:DyaK2MXktFelt74%3D

    Article  CAS  Google Scholar 

  32. Watt D R, Taylor A, Gillott A, et al. Reactive oxygen species-mediated cleavage of the prion protein in the cellular rresponse to oxidative stress. J Biol Chem, 2005, 280: 35914–35921, 16120605, 10.1074/jbc.M507327200, 1:CAS:528:DC%2BD2MXhtFCjsbfL

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoPing Dong.

Additional information

Supported by the National Science and Technology Task Force Project (Grant No. 2006BAD06A13-2), National Basic Research Program (973 Program) of China (Grant No. 2007CB310505) and National Natural Science Foundation of China (Grant Nos. 30571672, 30500018 and 30771914)

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, R., Dong, C., Lei, Y. et al. PrP mutants with different numbers of octarepeat sequences are more susceptible to the oxidative stress. SCI CHINA SER C 51, 630–639 (2008). https://doi.org/10.1007/s11427-008-0062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0062-4

Keywords

Navigation