Skip to main content
Log in

Study on interaction between microtubule associated protein tau and prion protein

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Microtubule-associated protein tau is considered to play roles in many neurodegenerative diseases including some transmissible spongiform encephalopathies. To address the possible molecular linkage of prion protein (PrP) and tau, a GST-fusion segment of human tau covering the three-repeat region and various PrP segments was used in the tests of GST pull-down and immunoprecipitation. We found tau protein interacted with various style prion proteins such as native prion protein (PrPC) or protease-resistant isoform (PrPSc). Co-localization signals of tau and PrP were found in the CHO cell transfected with both PrP and tau gene. The domain of interaction with tau was located at N-terminal of PrP (residues 23 to 91). The evidence of molecular interactions between PrP and tau protein highlights a potential role of tau in the biological function of PrP and the pathogenesis of TSEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguzzi A, Montrasio F, Kaeser P S. Prions: health scare and biological challenge.Nat Rev Mol Cell Biol, 2001, 2(2): 118–126

    Article  PubMed  CAS  Google Scholar 

  2. Persson L, Hardemark HG, Gustafsson G, et al. Tau protein and neuron-specific enolase in cerebrospinal fluid and serum: marker of cell damage in human central nervous system. Stroke, 1987, 18: 911–918

    PubMed  CAS  Google Scholar 

  3. Kunzi V, Glatzel M, Nakano M Y, et al. Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J Neurosci, 2002, 22(17): 7471–7477

    PubMed  CAS  Google Scholar 

  4. Kovacs G G, Budka H. Aging, the brain and human prion disease. Exp Gerontol, 2002, 37(4): 603–605

    Article  PubMed  CAS  Google Scholar 

  5. Ishizawa K, Komori T, Shimazu T, et al. Hyperphosphorylated tau deposition parallels prion protein burden in a case of Gerstmann-Straussler-Scheinker syndrome P102L mutation complicated with dementia. Acta Neuropathol (Berl), 2002, 104(4): 342–350

    Google Scholar 

  6. Ghetti B, Dlouhy S R, Giaccone G, et al. Gerstmann-Straussler-Scheinker disease and the Indiana kindred. Brain Pathol, 1995, 5(1): 61–75

    PubMed  CAS  Google Scholar 

  7. Ghetti B, Tagliavini F, Giaccone G, et al. Familial Gerstmann-Straussler-Scheinker disease with neurofibrillary tangles. Mol Neurobiol, 1994, 8(1): 41–48

    PubMed  CAS  Google Scholar 

  8. Hsiao K, Dlouhy S R, Farlow M R, et al. Mutant prion proteins in Gerstmann-Straussler-Scheinker disease with neurofibrillary tangles. Nat Genet, 1992, 1(1): 68–71

    Article  PubMed  CAS  Google Scholar 

  9. Spittaels K, Van den Haute C, Van Dorpe J, et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol, 1999, 155(6): 2153–2165

    PubMed  CAS  Google Scholar 

  10. Zhang Jin, Zhang Fuping, Nie Kai, et al. Expression and Purification of Various Deleted and Mutated Hamster’s PrPs in a Baculovirus System. Chin J Virol, 2003, 19: 36–41

    Google Scholar 

  11. Yao Hailan, Nie Kai, Han Jun, Xiao Xinli, Chen Lan, Wang Xiaofan, et al. Construction and application of a new prokaryotic expression vector. J Huazhong Univ Tech, 2004, 33(5):522–525

    CAS  Google Scholar 

  12. Krasemann S, Zerr I, Weber T, et al. Prion disease associated with a novel nine octapeptide repeat insertion in the PRNP gene. Brain Res Mol Brain Res, 1995, 34(1): 173–176

    Article  PubMed  CAS  Google Scholar 

  13. Shyng S L, Moulder K L, Lesko A, et al. The N-terminal domain of a glycolipid-anchored prion protein is essential for its endocytosis via clathrin-coated pits. J Biol Chem. 1995, 270(24): 14793–14800

    Article  PubMed  CAS  Google Scholar 

  14. Donne D G, Viles J H, Groth D, et al. Structure of the recombinant full-length hamster prion protein PrP (29–231): the N terminus is highly flexible. Proc Natl Acad Sci USA, 1997, 94(25): 13452–13457

    Article  PubMed  CAS  Google Scholar 

  15. Ryou C, Prusiner S B, Legname G. Cooperative binding of dominant-negative prion protein to kringle domains. J Mol Biol. 2003, 329(2): 323–333

    Article  PubMed  CAS  Google Scholar 

  16. Ghetti B, Piccardo P, Frangione B, et al. Prion protein amyloidosis. Brain Pathol. 1996, 6(2): 127–145

    PubMed  CAS  Google Scholar 

  17. Ferrer I. Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum, 2002, 1(3): 213–222

    Article  PubMed  CAS  Google Scholar 

  18. Kim S J, Reza Rahbar, Ramanujan S Hegde. Combinatorial Control of Prion Protein Biogenesis by the Signal Sequence and Transmembrane Domain. J Biol Chem, 2001, 276: 26132–26140

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xiaoping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Zhang, J., Yao, H. et al. Study on interaction between microtubule associated protein tau and prion protein. SCI CHINA SER C 49, 473–479 (2006). https://doi.org/10.1007/s11427-006-2019-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-006-2019-9

Keywords

Navigation