Skip to main content
Log in

The ploidy effects in plant gene expression: Progress, problems and prospects

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Polyploidy and haploid are widely employed in the studies of genetics and evolution, and great progress has been made in these fields, inspiring the enthusiasm of scientists to explore the ploidy effects in gene expression. In this paper, we review the gene expression and its regulation in polyploids, especially in autopolyploids. We summarize some limitations in previous reports on polyploidy gene expression and its regulation, especially the limitations in the research materials. We propose an idea to create homologous ploidy series with twin-seedlings and to employ high-throughput techniques to investigate the polyploidy transcriptome and its regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolfe K H. Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet, 2001, 2(5): 333–341, 11331899, 10.1038/35072009, 1:CAS:528:DC%2BD3MXjtlGjs7g%3D

    Article  PubMed  CAS  Google Scholar 

  2. Cui L, Wall P K, Leebens-Mack J H, et al. Widespread genome duplications throughout the history of flowering plants. Genome Res, 2006, 16(6): 738–749, 16702410, 10.1101/gr.4825606, 1:CAS:528:DC%2BD28XlvVeiurY%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Soltis P S. Ancient and recent polyploidy in angiosperms. New Phytol, 2005, 166(1): 58, 10.1111/j.1469-8137.2005.01379.x

    Article  Google Scholar 

  4. Leitch I L, Bennett M D. Polyploidy in angiosperms. Trends Plant Sci, 1997, 2: 470–476, 10.1016/S1360-1385(97)01154-0

    Article  Google Scholar 

  5. Paterson A H, Bowers J E. Chapman B A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA, 2004, 101(26): 9903–9908, 15161969, 10.1073/pnas.0307901101, 1:CAS:528:DC%2BD2cXlvVahtbY%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Paterson A H, Bowers J E, Peterson D Q et al. Structure and evolution of cereal genomes. CurrOpin Genet Dev, 2003,13(6): 644–650, 10.1016/j.gde.2003.10.002, 1:CAS:528:DC%2BD3sXpt1Snsbs%3D

    Article  CAS  Google Scholar 

  7. Yu J, Wang J, Lin W, et al. The Genomes of Oryza sativa: A history of duplications. PLoS Biol, 2005, 3(2): e38, 15685292, 10.1371/journal.pbio.0030038

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schranz M E, Osborn T C. De novo variation in life-history traits and responses to growth conditions of resynthesized polyploid Brassica napus (Brassicaceae). Am J Botany, 1991, 91(2): 174–183, 10.3732/ajb.91.2.174

    Article  Google Scholar 

  9. Chen C, Xiao H, Zhang W, et al. Adapting rice anther culture to gene transformation and RNA interference. Sci China Ser C-Life Sci, 2006, 49(5): 414–428, 10.1007/s11427-006-2013-2, 1:CAS:528:DC%2BD2sXktlWluw%3D%3D

    Article  CAS  Google Scholar 

  10. Cai D T, Chen J G, Chen D L, et al. The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability. Sci China Ser C-Life Sci, 2007, 50(3): 356–366, 10.1007/s11427-007-0049-6, 1:CAS:528:DC%2BD2sXosF2hsrs%3D

    Article  CAS  Google Scholar 

  11. Galitski T, Saldanha A J, Styles C A, et al. Ploidy regulation of gene expression. Science, 1999, 285(5425): 251–254, 10398601, 10.1126/science.285.5425.251, 1:CAS:528:DyaK1MXks1Sjtbc%3D

    Article  PubMed  CAS  Google Scholar 

  12. Storchova Z, Breneman A, Cande J, et al. Genome-wide genetic analysis of polyploidy in yeast. Nature, 2006, 443(7111): 541–547, 17024086, 10.1038/nature05178, 1:CAS:528:DC%2BD28XhtVCiu73M

    Article  PubMed  CAS  Google Scholar 

  13. Guo M, Davis D. Birchler J A. Dosage effects on gene expression in a maize ploidy series. Genetics, 1996, 142(4): 1349–1355, 8846910, 1:CAS:528:DyaK28XivVGjuro%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Stupar R M, Bhaskar P B, Yandell B S, et al. Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics, 2007, 176(4): 2055–2067, 17565939, 10.1534/genetics.107.074286, 1:CAS:528:DC%2BD2sXhtFGnu7fM

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Albertin W, Brabant P, Catrice O, et al. Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. Proteomics, 2005, 5(8): 2131–2139, 15852348, 10.1002/pmic.200401092, 1:CAS:528:DC%2BD2MXltVSjsrc%3D

    Article  PubMed  CAS  Google Scholar 

  16. Zhang H, Peng H, Li Y, et al. Patterns of DNA cytosine methylation between haploids and corresponding diploids in rice. Chin Sci Bull, 2006, 51(14): 1721–1728, 10.1007/s11434-006-2048-6, 1:CAS:528:DC%2BD28XmvFSgtbY%3D

    Article  CAS  Google Scholar 

  17. Adams K L. Evolution of duplicate gene expression in polyploid and hybrid plants. J Heredity, 2007, 98(2): 136,10.1093/jhered/esl061, 1:CAS:528:DC%2BD2sXmvF2jsr8%3D

    Article  CAS  Google Scholar 

  18. Pontes O, Neves N, Silva M, et al. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA, 2004, 101(52): 18240–18245, 15604143, 10.1073/pnas.0407258102, 1:CAS:528:DC%2BD2MXjsl2kuw%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Udall J A, Wendel J F. Polyploidy and crop improvement. Crop Sci, 2006, 46(Suppll):S3–14

    Google Scholar 

  20. Madlung A, Masuelli R W, Watson B, et al. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol, 2002, 129(2): 733–746, 12068115, 10.1104/pp.003095, 1:CAS:528:DC%2BD38XkvV2jt7w%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Lukens L N, Pires J C, Leon E, et al. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol, 2006, 140(1): 336–34816377753, 10.1104/pp.105.066308, 1:CAS:528:DC%2BD28XhtVCgtrc%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Chen Z J, Ni Z. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays, 2006, 28(3): 240–252, 16479580, 10.1002/bies.20374

    Article  PubMed  Google Scholar 

  23. Wang J, Tian L, Lee H S, et al. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics, 2006, 172(1): 507–517, 16172500, 10.1534/genetics.105.047894, 1:CAS:528:DC%2BD28XhvV2jtrk%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Wang J, Tian L, Madlung A, et al. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics, 2004, 167(4): 1961–1973, 15342533, 10.1534/genetics.104.027896, 1:CAS:528:DC%2BD2cXos1egtrc%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Adams K L, Percifield R. Wendel J F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics, 2004, 168(4): 2217–2226, 15371349, 10.1534/genetics.104.033522, 1:CAS:528:DC%2BD2MXhtVyjtr8%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Hegarty M J, Jones J M, Wilson I D, et al. Development of anonymous cDNA microarrays to study changes to the Senecio floral transcriptome during hybrid speciation. Mol Ecol, 2005, 14(8): 2493–2510, 15969730, 10.1111/j.1365-294x.2005.02608.x, 1:CAS:528:DC%2BD2MXmvF2qsbk%3D

    Article  PubMed  CAS  Google Scholar 

  27. Albertin W, Balliau T, Brabant P, et al. Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics, 2006, 173(2): 1101–1113, 16624896, 10.1534/genetics.106.057554, 1:CAS:528:DC%2BD28Xns12qt7w%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 2002, 160(4): 1651–1659, 11973318, 1:CAS:528:DC%2BD38XktFahtro%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  29. He P, Friebe B R, Gill B S, et al. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol, 2003, 52(2): 401–414, 12856945, 10.1023/A:1023965400532, 1:CAS:528:DC%2BD3sXktFSmu74%3D

    Article  PubMed  CAS  Google Scholar 

  30. Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics, 2000, 154(1): 459–473, 10629003, 1:CAS:528:DC%2BD3cXms1KhsA%3D%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Adams K L, Cronn R, Percifield R, et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA, 2003, 100(8): 4649–4654, 12665616, 10.1073/pnas.0630618100, 1:CAS:528:DC%2BD3sXjt12nsrc%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Adams K L, Wendel J F. Polyploidy and genome evolution in plants. Curr Opin Plant Biol, 2005, 8(2): 135–141, 15752992, 10.1016/j.pbi.2005.01.001, 1:CAS:528:DC%2BD2MXitVCntLY%3D

    Article  PubMed  CAS  Google Scholar 

  33. Adams K L, Wendel J F. Novel patterns of gene expression in polyploid plants. Trends Genet, 2005, 21(10): 539–543, 16098633, 10.1016/j.tig.2005.07.009, 1:CAS:528:DC%2BD2MXhtVWisbzJ

    Article  PubMed  CAS  Google Scholar 

  34. McClintock B. The significance of responses of the genome to challenge. Science, 1984, 226(4676): 792–801,15739260, 10.1126/science.15739260, 1:STN:280:DC%2BD2M7gvV2juw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  35. Guo H, Ecker J R. The ethylene signaling pathway: New insights. Curr Opin Plant Biol, 2004, 7(1): 40–49, 14732440, 10.1016/j.pbi.2003.11.011, 1:CAS:528:DC%2BD2cXltFWqtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  36. Wendel J F. Genome evolution in polyploids. Plant Mol Biol, 2000, 42(1): 225–249, 10688139, 10.1023/A:1006392424384, 1:CAS:528:DC%2BD3cXht1Grsrk%3D

    Article  PubMed  CAS  Google Scholar 

  37. Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol, 2003, 29(3): 365–379, 14615180, 10.1016/S1055-7903(03)00213-6, 1:CAS:528:DC%2BD3sXovVWntb0%3D

    Article  PubMed  CAS  Google Scholar 

  38. Hegarty M J, Barker G L, Wilson I D, et al. Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol, 2006, 16(16): 1652–1659, 16920628, 10.1016/j.cub.2006.06.071, 1:CAS:528:DC%2BD28XosVOhtrs%3D

    Article  PubMed  CAS  Google Scholar 

  39. Auger D L, Gray A D, Ream T S, et al. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics, 2005, 169(1): 389–397, 15489529, 10.1534/genetics.104.032987, 1:CAS:528:DC%2BD2MXit1yhsLw%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Osborn T C, Pires J C, Birchler J A, et al. Understanding mechanisms of novel gene expression in polyploids. Trends Genet, 2003, 19(3): 141–147, 12615008, 10.1016/S0168-9525(03)00015-5, 1:CAS:528:DC%2BD3sXhsVaisrY%3D

    Article  PubMed  CAS  Google Scholar 

  41. Guo M, Birchler J A. Trans-acting dosage effects on the expression of model gene systems in maize aneuploids. Science, 1994, 266(5193): 1999–2002,17836517, 10.1126/science.266.5193.1999, 1:CAS:528:DyaK2MXisl2lu70%3D

    Article  PubMed  CAS  Google Scholar 

  42. Kashkush K, Feldman M. Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 2003, 33(1): 102–106,12483211, 10.1038/ng1063, 1:CAS:528:DC%2BD38XpvVeqs7s%3D

    Article  PubMed  CAS  Google Scholar 

  43. Yamada K, Lim J, Dale J M, et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 2003, 302(5646): 842846,10.1126/science.1088305

    Article  Google Scholar 

  44. Lee H S, Chen Z J. Proteincoding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA, 2001, 98(12): 6753–6758, 11371624, 10.1073/pnas.121064698, 1:CAS:528:DC%2BD3MXksVOku7w%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Comai L, Tyagi A P, Winter K, et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell, 2000, 12(9): 1551–1568, 11006331, 10.1105/tpc.12.9.1551, 1:CAS:528:DC%2BD3cXnsVylsbc%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 2006, 126(6): 1189–1201,16949657, 10.1016/j.cell.2006.08.003, 1:CAS:528:DC%2BD28XhtVCnsrvP

    Article  PubMed  CAS  Google Scholar 

  47. Tate J A, Soltis D E, Soltis P S. Polyploidy in Plants, in the Evolution of the Genome. New York: Academic Press, 2004

    Google Scholar 

  48. Otto S P, Whitton J. Polyploid incidence and evolution. Annu Rev Genet, 2000, 34:401437, 10.1146/annurev.genet.34.1.401

    Article  Google Scholar 

  49. Baumel A, Ainouche M L. Levasseur J E. Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Mol Ecol, 2001, 10(7): 1689–1701, 11472537, 10.1046/j.1365-294X.2001.01299.x, 1:CAS:528:DC%2BD3MXlvVyns7w%3D

    Article  PubMed  CAS  Google Scholar 

  50. Cook L M, Soltis P S. Mating systems of diploid and allotetraploid populations of tragopogon (Asteraceae). I. Natural populations. Heredity, 1999, 82(Pt 3): 237–244, 10336697, 10.1038/sj.hdy.6884620

    Article  PubMed  Google Scholar 

  51. Abbott R J, Lowe A J. Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biol J Lonn Soc, 2004, 82: 467–474, 10.1111/j.1095-8312.2004.00333.x

    Article  Google Scholar 

  52. Wendel J F, Doyle J J, eds. Phylogenetic incongruence: Window into genome history and molecular evolution. In: Soltis D E, Soltis P S, Doyle J J, eds. Molecular Systematics of Plants. II. Boston: Kluwer Academic Pub, 1998. 265–296

  53. Han F P, Liu Z L, Tan M, et al. Mobilized retrotransposon Tos 17 of rice by alien DNA introgression transposes into genes and causes structural and methylation alterations of a flanking genomic region. Heredity, 2004, 141(3): 243–251, 10.1111/j.1601-5223.2004.01808.x, 1:STN:280:DC%2BD2M%2FnsVehtg%3D%3D

    Article  CAS  Google Scholar 

  54. Cheng C, Daigen M, Hirochika H. Epigenetic regulation of the rice retrotransposon Tos 17. Mol Genet Genomics, 2006, 276(4): 378–390, 16821043, 10.1007/s00438-006-0141-9, 1:CAS:528:DC%2BD28XovF2ltbg%3D

    Article  PubMed  CAS  Google Scholar 

  55. Guo M, Birchler J A. Trans-acting dosage effects on the expression of model gene systems in maize aneuploids. Science, 1994, 266(5193): 1999,17836517, 10.1126/science.266.5193.1999, 1:CAS:528:DyaK2MXisl2lu70%3D

    Article  PubMed  CAS  Google Scholar 

  56. Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development, 2007, 134: 3959–3965, 17928417, 10.1242/dev.001131, 1:CAS:528:DC%2BD1cXmvVI%3D

    Article  PubMed  CAS  Google Scholar 

  57. Peng H, Zhang H Y, Li Y, et al. Natural homologous triploidization and DNA methylation of twin-seedling rice SARII-628. Chin J Rice Sci, 2006,20(5): 469–474, 1:CAS:528:DC%2BD2sXitlOrug%3D%3D

    CAS  Google Scholar 

  58. Zilberman D, Gehring M, Tran R K, et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet, 2007, 39:61–69, 17128275, 10.1038/ng1929, 1:CAS:528:DC%2BD28XhtlGktLvJ

    Article  PubMed  CAS  Google Scholar 

  59. Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437(7057): 376–380, 16056220, 1:CAS:528:DC%2BD2MXpvFOrt7s%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Ju J, Kim D H, Bi L, et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc NatlAcad Sci USA, 2006, 103(52): 19635–19640, 10.1073/pnas.0609513103, 1:CAS:528:DC%2BD2sXjtVSlsg%3D%3D

    Article  CAS  Google Scholar 

  61. Bentley D R. Whole-genome re-sequencing. Curr Opin Genet Dev, 2006, 16: 545–552, 17055251, 10.1016/j.gde.2006.10.009, 1:CAS:528:DC%2BD28Xht1Cmt7jN

    Article  PubMed  CAS  Google Scholar 

  62. Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of his-tone methylations in the human genome. Cell, 2007, 129(4): 823–837,17512414, 10.1016/j.cell.2007.05.009, 1:CAS:528:DC%2BD2sXmtFKjsro%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianJun Wu.

Additional information

Contributed equally to this work

Supported by the National Natural Science Foundation of China (Grant No. 30771157) and the Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0453)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, H., Zhang, J. & Wu, X. The ploidy effects in plant gene expression: Progress, problems and prospects. SCI CHINA SER C 51, 295–301 (2008). https://doi.org/10.1007/s11427-008-0039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0039-3

Keywords

Navigation