Skip to main content
Log in

Isolation of the promoter of a cotton β-galactosidase gene (GhGal1) and its expression in transgenic tobacco plants

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

β-galactosidases (EC 3.2.1.23) constitute a widespread family of glycosyl hydrolases in plants and are thought to be involved in metabolism of cell wall polysaccharides. A cDNA of the cotton (Gossypium hirsutum) β-galactosidase gene, designated GhGal1, has previously been identified and its transcripts are highly abundant at the elongation stage of the cotton fiber. To examine the temporal and spatial control of GhGal1 expression, a transcriptional fusion of the GhGal1 promoter region (1770 bp) with the β-glucuronidase (GUS) reporter gene was introduced into tobacco plants by the Agrobacterium infection method. The resulting transgenic plants showed higher GUS activity of fruit in the transgenic plants than that in the negative and positive controls. Histochemical localization of GUS activity demonstrated that the expression of the GUS gene could be found in the meristem zones of roots, cotyledons, vascular tissues, fruit and trichomes in transgenic tobacco plants. Additionally, sequence analysis of the regulatory region also revealed several conserved motifs among which some were shared with previously reported fruit/seed-specific elements and the others were related with trichome expression. These results indicated the temporal and spatial expression characterization of the GhGal1 promoter in transgenic tobacco plants and provided an important insight into the roles of GhGal1 in cotton fiber development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, D. L., Gross, K. C., A family of at least seven β-galactosidase genes is expressed during tomato fruit development, Plant Physiol., 2000, 123: 1173–1183., 10.1104/pp.123.3.1173, 1:CAS:528:DC%2BD3cXlt1SltLw%3D, 10889266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Smith, D. L., Abbott, J. A., Gross, K. C., Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening, Plant Physiol., 2002, 129: 1755–1762., 1:CAS:528:DC%2BD38Xmtl2gt7g%3D, 12177488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Buckeridge, M. S., Reid, J. S., Purification and properties of a novel β-Galactosidase or exo-β-D-Galactosidase from the cotyledons of germinated Lupinus angustifolius L. seeds, Planta, 1994, 192: 502–511., 10.1007/BF00203588, 1:CAS:528:DyaK2cXis1Cht7k%3D, 7764618

    Article  CAS  PubMed  Google Scholar 

  4. Rogers, H. J., Maund, S. L., Johnson, L. H., A β-galactosidase-like gene is expressed during tobacco pollen development, J. Exp. Bot., 2001, 52: 67–75., 1:CAS:528:DC%2BD3MXhvVOitrg%3D, 11181714

    Article  CAS  PubMed  Google Scholar 

  5. Brandt, A. S., Woodson, W. R., Purification and characterization of a β-galactosidase from sensing carnation petals, Plant Physiol., 1997, 114(Suppl): 804.

    Google Scholar 

  6. Zhang, H. M., Liu, J. Y., Molecular cloning and characterization of a β-galactosidase gene expressed preferentially in cotton fibers, J. Integrat. Plant Biol., 2005, 47: 223–232., 1:CAS:528:DC%2BD28Xpt1ylsA%3D%3D

    Article  CAS  Google Scholar 

  7. Maley, F., Trimble, R. B., Tarentino, A. L. et al., Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases, Anal. Biochem., 1989, 80: 195–204.

    Article  Google Scholar 

  8. Raghothama, K. G., Lawton, K. A., Goldsbrough, P. B. et al., Characterization of an ethylene-regulated flower senescence-related gene from carnation, Plant Mol. Biol., 1991, 17: 61–71., 10.1007/BF00036806, 1:CAS:528:DyaK38XhsVGit7w%3D, 1868223

    Article  CAS  PubMed  Google Scholar 

  9. Ross, G. S., Redgwell, R. J., MacRae, E. A., Kiwifruit β-galactosidase: Isolation and activity against specific fruit cell-wall polysaccharides, Planta, 1993, 189: 499–506., 10.1007/BF00198212, 1:CAS:528:DyaK3sXisFShu7s%3D

    Article  CAS  Google Scholar 

  10. Hall, B. G., Determining the evolutionary potential of a gene. Mol. Biol. Evol., 1998, 15: 1055–1061., 1:CAS:528:DyaK1cXlt1ejsbk%3D, 9718732

    Article  CAS  PubMed  Google Scholar 

  11. Li, S. C., Han, J. W., Chen, K. C. et al., Purification and characterization of isoforms of β-galactosidases in mung bean seedlings, Phytochemistry, 2001, 57: 349–359., 1:CAS:528:DC%2BD3MXjtFCmsrw%3D, 11393513

    Article  CAS  PubMed  Google Scholar 

  12. Nunan, K. J., Davies, C., Robinson, S. P. et al., Expression patterns of cell wall-modifying enzymes during grape berry development, Planta, 2001, 214: 257–264., 1:CAS:528:DC%2BD3MXovFKns7c%3D, 11800390

    Article  CAS  PubMed  Google Scholar 

  13. Trainotti, L., Spinello, R., Piovan, A. et al., β-galactosidases with a lectin-like domain are expressed in strawberry, J. Exp. Bot., 2001, 52: 1635–1645., 10.1093/jexbot/52.361.1635, 1:CAS:528:DC%2BD3MXlvVClsro%3D, 11479328

    Article  CAS  PubMed  Google Scholar 

  14. Liu, J. Y., Zhao, G. R., Li, J., Molecular engineering on quality improvement of cotton fiber, Acta Bot. Sin. (in Chinese), 2000, 42: 991–995., 1:CAS:528:DC%2BD3cXovFOnsL4%3D

    CAS  Google Scholar 

  15. Wilkins, T. A., Jernstedt, J. A., Molecular genetics of developing cotton fibers, in Cotton Fibers (ed. Basra, A. S.), New York: Hawthorne Press, 1999, 231–267.

    Google Scholar 

  16. Paterson, A. H., Brubaker, C. L., Wendel, J. F., A rapid method for extraction cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis, Plant Mol. Biol. Rep., 1993, 11: 122–127., 1:CAS:528:DyaK3sXlvFKks7o%3D

    Article  CAS  Google Scholar 

  17. Walkerpeach, C. R., Velten, J., Agrobacterium-mediated gene transfer to plant cells: Co-integrate and binary vector systems, in Plant Molecular Biology Manual (eds. Gelvin, S. B., Schilperoort, R. A.), Dordrecht: Kluwer, 1994, B1: 1–19.

    Google Scholar 

  18. Horsch, R. B., Fry, J. E., Hoffman, N. L. et al., A simple and general method of transferring genes into plants, Science, 1985, 227: 1229–1231., 1:CAS:528:DyaL2MXhtFSjsLc%3D

    Article  CAS  Google Scholar 

  19. Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant, 1962, 15: 473–497., 1:CAS:528:DyaF3sXksFKm

    Article  CAS  Google Scholar 

  20. Jefferson, R. A., Kavanagh, T. A., Bevan, M. W., GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J., 1987, 6: 3901–3907., 1:CAS:528:DyaL1cXovV2itQ%3D%3D, 3327686

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Bradford, M. M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72: 248–254., 10.1016/0003-2697(76)90527-3, 1:CAS:528:DyaE28XksVehtrY%3D, 942051

    Article  CAS  PubMed  Google Scholar 

  22. Higo, K., Ugawa, Y., Iwamoto, M. et al., Plant cis-acting regulatory DNA elements (PLACE) database, Nucleic Acids Res., 1999, 27: 297–300., 10.1093/nar/27.1.297, 1:CAS:528:DyaK1MXpsVKgug%3D%3D, 9847208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lescot, M., Déhais, P., Thijs, G. et al., PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences, Nucleic Acids Res., 2002, 30: 325–327., 10.1093/nar/30.1.325, 1:CAS:528:DC%2BD38Xht12rs7k%3D, 11752327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ellerstrom, M., Stalberg, K., Ezcurra, I. et al., Functional dissection of a napin gene promoter: Identification of promoter elements required for embryo and endosperm-specific transcription, Plant Mol. Biol., 1996, 32: 1019–1027., 1:STN:280:ByiC2MnhsVQ%3D, 9002600

    Article  CAS  PubMed  Google Scholar 

  25. Ezcurra, I., Ellerstrom, M., Wycliffe, P. et al., Interaction between composite elements in the napA promoter: Both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression, Plant Mol. Biol., 1999, 40: 699–709., 10.1023/A:1006206124512, 1:CAS:528:DyaK1MXlvV2rt78%3D, 10480393

    Article  CAS  PubMed  Google Scholar 

  26. Wu, C., Washida, H., Onodera, Y. et al., Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: Minimal cis-element requirements for endosperm-specific gene expression, Plant J., 2000, 23: 415–421., 10.1046/j.1365-313x.2000.00797.x, 1:CAS:528:DC%2BD3cXmsFSlur0%3D, 10929134

    Article  CAS  PubMed  Google Scholar 

  27. Yamagata, H., Yonesu, K., Hirata, A. et al., TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene, J. Biol. Chem., 2002, 277: 11582–11590., 10.1074/jbc.M109946200, 1:CAS:528:DC%2BD38Xis1Kgt7o%3D, 11782472

    Article  CAS  PubMed  Google Scholar 

  28. Yamauchi, D., A TGACGT Motif in the 5′-upstream region of alpha-amylase gene from Vigna mungo is a cis-element for expression in cotyledons of germinated seeds, Plant Cell Physiol., 2001, 42: 635–641., 10.1093/pcp/pce079, 1:CAS:528:DC%2BD3MXks1CrurY%3D, 11427683

    Article  CAS  PubMed  Google Scholar 

  29. Kamiya, N., Nagasaki, H., Morikami, A. et al., Isolation and characterization of a rice WUSCHEL-tyope homoebox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem, Plant J., 2003, 35: 429–441., 10.1046/j.1365-313X.2003.01816.x, 1:CAS:528:DC%2BD3sXnsFyitLw%3D, 12904206

    Article  CAS  PubMed  Google Scholar 

  30. Stalberg, K., Ellerstom, M., Ezcurra, I. et al., Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds, Planta, 1996, 199: 515–519., 1:STN:280:BymH3Mrjt1A%3D, 8818291

    Article  CAS  PubMed  Google Scholar 

  31. Montgomery, J., Goldman, S., Deikman, J. et al., Identification of an ethylene-responsive region in the promoter of a fruit ripening gene, Proc. Natl. Acad. Sci. USA, 1993, 90: 5939–5943., 1:CAS:528:DyaK3sXltFSnu7Y%3D, 8327464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lu, C. A., Ho, T. D., Ho, S. L. et al., Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of α-Amylase gene expression, Plant Cell, 2002, 14: 1963–1980., 10.1105/tpc.001735, 1:CAS:528:DC%2BD38XmslCgsrg%3D, 12172034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Daniell, H., Streatfield, S. J., Wycoff, K., Medical molecular farming: Production of antibodies, biopharmaceuticals and edible vaccines in plants, Trends Plant Sci., 2001, 6: 219–226., 1:CAS:528:DC%2BD3MXlsFKmtbw%3D, 11335175

    Article  CAS  PubMed  Google Scholar 

  34. Hsu, C., Roy, G. C., Jenkins, J. N. et al., Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants, Plant Sci., 1999, 143: 63–70., 10.1016/S0168-9452(99)00026-6, 1:CAS:528:DyaK1MXjtFWktrg%3D

    Article  CAS  Google Scholar 

  35. Liu, H., Creech, R. G., Jenkins, J. N. et al., Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3, Biochim. Biophys. Acta, 2000, 1487: 106–111., 1:CAS:528:DC%2BD3cXmtVGhsrc%3D, 11004611

    Article  CAS  PubMed  Google Scholar 

  36. Kim, H. J., Triplett, B. A., Cotton fiber growth in planta and in vitro: Models for plant cell elongation and cell wall biogenesis, Plant Physiol., 2001, 127: 1361–1366., 1:CAS:528:DC%2BD38XjtVWitQ%3D%3D, 11743074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Wang, S., Wang, J. W., Yu, N. et al., Control of plant trichomes development by a cotton fiber MYB genee, Plant Cell, 2004, 16: 2323–2334., 1:CAS:528:DC%2BD2cXnvVartLk%3D, 15316114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wang, E., Gan, S., Wagner, G. J., Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L., J. Exp. Bot., 2002, 53: 1891–1897., 1:CAS:528:DC%2BD38Xms1Kmsbk%3D, 12177128

    Article  CAS  PubMed  Google Scholar 

  39. Rerie, W. G., Feldmann, K. A., Marks, M. D., The GLABRA2 gene encodes a homeodomain protein required for normal trichome development in Arabidopsis, Genes Dev., 1994, 8: 1388–1399., 1:CAS:528:DyaK2cXlsFSitbw%3D, 7926739

    Article  CAS  PubMed  Google Scholar 

  40. Abe, M., Takahashi, T., Komeda, Y., Identification of a cis-7regulatory element for L1 layer-specific gene expression, which is targeted by an L1-specific homeodomain protein, Plant J., 2001, 26: 487–494., 10.1046/j.1365-313x.2001.01047.x, 1:CAS:528:DC%2BD3MXlvVKhsL4%3D, 11439135

    Article  CAS  PubMed  Google Scholar 

  41. Meier, H., Reid, J. S. G., Reserve polysaccharides other than starch in higher plants, in Encyclopedia of Plant Physiology (eds. Loewus, F. A., Tanner, W.,), Berlin: Springer-Verlag Press, 1982, 418–471.

    Google Scholar 

  42. Edwards, M., Dea, I. C. M., Bulpin, P. V. et al., Xyloglucan (amyloid) mobilization in the cotyledons of Tropaeolum majus L. seeds following germination, Planta, 1985, 163: 133–140., 10.1007/BF00395907, 1:CAS:528:DyaL2MXhtV2qtbY%3D

    Article  CAS  PubMed  Google Scholar 

  43. Edwards, M., Dea, I. C. M., Bulpin, P. V. et al., Purification and properties of a novel, xyloglucan-specific endo-(1—4)-beta-D-glucanase from germinated nasturtium seeds (Tropaeolum majus L.), J. Biol. Chem. 1986, 261: 9489–9494., 1:CAS:528:DyaL28XkslCktr8%3D, 3722207

    CAS  PubMed  Google Scholar 

  44. Edwards, M., Bowman, Y. J. L., Dea, I. C. M. et al., A β-D-galactosidase from Nasturtium (Tropueolum mujus L.) cotyledons—purification, properties, and demonstration that xyloglucan is the natural substrate, J. Biol. Chem., 1988, 263: 4333–4337., 1:CAS:528:DyaL1cXhs1ersr8%3D, 3126187

    CAS  PubMed  Google Scholar 

  45. Enéas-filho, J., Barbosa, G. K. C., Sudério, F. B. et al., Isolation and partial purification of β-galactosidases from cotyledons of two cowpea cultivars, R. Bras. Fisiol. Veg., 2001, 13: 251–261.

    Google Scholar 

  46. De Alcântara, P. H. N., Dietrich, S. M. C., Buckeridge, M. S., Xyloglucan mobilization and purification of a (XLLGXLXG) specific β-galactosidase from cotyledons of Copaifera langadorffii, Plant Physiol. Biochem., 1999, 37: 653–663.

    Article  Google Scholar 

  47. Buckeridge, M. S., Dietrich, S. M. C., Galactomannans from Brazilian legume seeds, Revta Brasil Botan., 1990, 13: 109–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Jinyuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, A., Liu, J. Isolation of the promoter of a cotton β-galactosidase gene (GhGal1) and its expression in transgenic tobacco plants. SCI CHINA SER C 49, 105–114 (2006). https://doi.org/10.1007/s11427-006-0105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-006-0105-7

Keywords

Navigation