Skip to main content
Log in

Light enhanced proton conductivity in a terbium phosphonate photochromic chain complex

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Crystalline complexes that exhibited light switchable proton conductivity are of great interest but still a challenge in material science. Herein, a terbium phosphonate chain complex was synthesized through assembly of electron-rich phosphonate units, electron-deficient polypyridine components and paramagnetic Tb3+ ions. Via light irradiation and heat treatment, the photogenerated radicals could simultaneously and reversibly tune the photochromic, luminescent and magnetic properties. Originated from the abundant hydrogen bonding networks formed between PO3 groups and lattice water molecules, proton conductive behaviour was explored with high proton conductivity of (1.74±0.19)×10−3 S cm−1 at 80 °C and 100% relative humidity. Importantly, accompanied with the colorless sample changed to blue, the proton conductivity increased about 20% after room temperature light illumination, implying that light irradiation could act as an external stimulus to enhance the conductive properties of original material. This work innovatively realized the light responsive conductive property in the electron transfer photochromic materials, providing a novel strategy for the construction of smart materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li AL, Gao Q, Xu J, Bu XH. Coord Chem Rev, 2017, 344: 54–82

    Article  CAS  Google Scholar 

  2. Wang S, Wahiduzzaman M, Davis L, Tissot A, Shepard W, Marrot J, Martineau-Corcos C, Hamdane D, Maurin G, Devautour-Vinot S, Serre C. Nat Commun, 2018, 9: 4937

    Article  PubMed  PubMed Central  Google Scholar 

  3. Okawa H, Sadakiyo M, Yamada T, Maesato M, Ohba M, Kitagawa H. J Am Chem Soc, 2013, 135: 2256–2262

    Article  CAS  PubMed  Google Scholar 

  4. Liu B, Liu JC, Shen Y, Feng JS, Bao SS, Zheng LM. Dalton Trans, 2019, 48: 6539–6545

    Article  CAS  PubMed  Google Scholar 

  5. Wang B, Lin RB, Zhang Z, Xiang S, Chen B. J Am Chem Soc, 2020, 142: 14399–14416

    Article  CAS  PubMed  Google Scholar 

  6. Lim DW, Kitagawa H. Chem Rev, 2020, 120: 8416–8467

    Article  CAS  PubMed  Google Scholar 

  7. Bao SS, Otsubo K, Taylor JM, Jiang Z, Zheng LM, Kitagawa H. J Am Chem Soc, 2014, 136: 9292–9295

    Article  CAS  PubMed  Google Scholar 

  8. Yang Y, He X, Zhang P, Andaloussi YH, Zhang H, Jiang Z, Chen Y, Ma S, Cheng P, Zhang Z. Angew Chem Int Ed, 2020, 59: 3678–3684

    Article  CAS  Google Scholar 

  9. Cai ZS, Bao SS, Wang XZ, Hu Z, Zheng LM. Inorg Chem, 2016, 55: 3706–3712

    Article  CAS  PubMed  Google Scholar 

  10. Xie XX, Yang YC, Dou BH, Li ZF, Li G. Coord Chem Rev, 2020, 403: 213100

    Article  CAS  Google Scholar 

  11. Xing XS, Fu ZH, Zhang NN, Yu XQ, Wang MS, Guo GC. Chem Commun, 2019, 55: 1241–1244

    Article  CAS  Google Scholar 

  12. Luo HB, Ren LT, Ning WH, Liu SX, Liu JL, Ren XM. Adv Mater, 2016, 28: 1663–1667

    Article  CAS  PubMed  Google Scholar 

  13. Nagarkar SS, Horike S, Itakura T, Le Ouay B, Demessence A, Tsujimoto M, Kitagawa S. Angew Chem Int Ed, 2017, 56: 4976–4981

    Article  CAS  Google Scholar 

  14. Wei YS, Hu XP, Han Z, Dong XY, Zang SQ, Mak TCW. J Am Chem Soc, 2017, 139: 3505–3512

    Article  CAS  PubMed  Google Scholar 

  15. Müller K, Helfferich J, Zhao F, Verma R, Kanj AB, Meded V, Bléger D, Wenzel W, Heinke L. Adv Mater, 2018, 30: 1706551

    Article  Google Scholar 

  16. Kanj AB, Chandresh A, Gerwien A, Grosjean S, Bräse S, Wang Y, Dube H, Heinke L. Chem Sci, 2020, 11: 1404–1410

    Article  CAS  Google Scholar 

  17. Liang HQ, Guo Y, Shi Y, Peng X, Liang B, Chen B. Angew Chem Int Ed, 2020, 59: 7732–7737

    Article  CAS  Google Scholar 

  18. Andrew TL, Tsai HY, Menon R. Science, 2009, 324: 917–921

    Article  CAS  PubMed  Google Scholar 

  19. Wu J, Tao C, Li Y, Li J, Yu J. Chem Sci, 2015, 6: 2922–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun C, Xu G, Jiang XM, Wang GE, Guo PY, Wang MS, Guo GC. J Am Chem Soc, 2018, 140: 2805–2811

    Article  CAS  PubMed  Google Scholar 

  21. Ma P, Hu F, Wan R, Huo Y, Zhang D, Niu J, Wang J. J Mater Chem C, 2016, 4: 5424–5433

    Article  CAS  Google Scholar 

  22. Xia B, Zhou Y, Wang QL, Xu XF, Tong YZ, Bu XH, Li JR. Dalton Trans, 2018, 47: 15888–15896

    Article  CAS  PubMed  Google Scholar 

  23. Sun JK, Yang XD, Yang GY, Zhang J. Coord Chem Rev, 2019, 378: 533–560

    Article  CAS  Google Scholar 

  24. Gong T, Yang X, Sui Q, Qi Y, Xi FG, Gao EQ. Inorg Chem, 2016, 55: 96–103

    Article  CAS  PubMed  Google Scholar 

  25. Jhang PC, Chuang NT, Wang SL. Angew Chem Int Ed, 2010, 49: 4200–4204

    Article  CAS  Google Scholar 

  26. Li SL, Han M, Zhang Y, Li GP, Li M, He G, Zhang XM. J Am Chem Soc, 2019, 141: 12663–12672

    Article  CAS  PubMed  Google Scholar 

  27. Hu JX, Jiang XF, Ma YJ, Liu XR, Ge BD, Wang AN, Wei Q, Wang GM. Sci China Chem, 2021, 64: 432–438

    Article  CAS  Google Scholar 

  28. Li L, Wang JR, Hua Y, Guo Y, Fu C, Sun YN, Zhang H. J Mater Chem C, 2019, 7: 38–42

    Article  CAS  Google Scholar 

  29. Liu AJ, Xu F, Han SD, Pan J, Wang GM. Cryst Growth Des, 2020, 20: 7350–7355

    Article  CAS  Google Scholar 

  30. Ma YJ, Hu JX, Han SD, Pan J, Li JH, Wang GM. J Am Chem Soc, 2020, 142: 2682–2689

    Article  CAS  PubMed  Google Scholar 

  31. Li PX, Wang MS, Zhang MJ, Lin CS, Cai LZ, Guo SP, Guo GC. Angew Chem Int Ed, 2014, 53: 11529–11531

    Article  CAS  Google Scholar 

  32. Bao SS, Shimizu GKH, Zheng LM. Coord Chem Rev, 2019, 378: 577–594

    Article  CAS  Google Scholar 

  33. Cai ZS, Shi Y, Bao SS, Shen Y, Xia XH, Zheng LM. ACS Catal, 2018, 8: 3895–3902

    Article  CAS  Google Scholar 

  34. Bloyet C, Rueff JM, Cardin J, Caignaert V, Doualan JL, Lohier JF, Jaffrès PA, Raveau B. Eur J Inorg Chem, 2018, 2018(26): 3095–3103

    Article  CAS  Google Scholar 

  35. Inukai M, Nishiyama Y, Honjo K, Das C, Kitagawa S, Horike S. Chem Commun, 2019, 55: 8528–8531

    Article  CAS  Google Scholar 

  36. Mileo PGM, Kundu T, Semino R, Benoit V, Steunou N, Llewellyn PL, Serre C, Maurin G, Devautour-Vinot S. Chem Mater, 2017, 29: 7263–7271

    Article  CAS  Google Scholar 

  37. Bao SS, Qin MF, Zheng LM. Chem Commun, 2020, 56: 12090–12108

    Article  CAS  Google Scholar 

  38. Zhang NN, Han YF, Du MX, Sa RJ, Wang MS, Guo GC. Chem Eur J, 2019, 25: 13972–13976

    Article  CAS  PubMed  Google Scholar 

  39. Anderson HL, Anderson S, Sanders JKM. J Chem Soc Perkin Trans 1, 1995, 18: 2231–2245

    Article  Google Scholar 

  40. Zhang P, Perfetti M, Kern M, Hallmen PP, Ungur L, Lenz S, Ringenberg MR, Frey W, Stoll H, Rauhut G, van Slageren J. Chem Sci, 2018, 9: 1221–1230

    Article  CAS  PubMed  Google Scholar 

  41. Liu JL, Chen YC, Tong ML. Chem Soc Rev, 2018, 47: 2431–2453

    Article  CAS  PubMed  Google Scholar 

  42. Yin DD, Chen Q, Meng YS, Sun HL, Zhang YQ, Gao S. Chem Sci, 2015, 6: 3095–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu SJ, Cao C, Yang F, Yu MH, Yao SL, Zheng TF, He WW, Zhao HX, Hu TL, Bu XH. Cryst Growth Des, 2016, 16: 6776–6780

    Article  CAS  Google Scholar 

  44. Zhou LJ, Deng WH, Wang YL, Xu G, Yin SG, Liu QY. Inorg Chem, 2016, 55: 6271–6277

    Article  CAS  PubMed  Google Scholar 

  45. Zhu SD, Dong L, Hu JJ, Wen HR, Lu YB, Deng WH, Liu CM, Liu SJ, Xu G, Fu ZH. J Mater Chem C, 2021, 9: 481–488

    Article  CAS  Google Scholar 

  46. Jiang XF, Ma YJ, Hu JX, Wang GM. Inorg Chem, 2020, 59: 11834–11840

    Article  CAS  PubMed  Google Scholar 

  47. Ma YJ, Han SD, Mu Y, Pan J, Li JH, Wang GM. Cryst Growth Des, 2018, 18: 3477–3483

    Article  CAS  Google Scholar 

  48. Chand S, Pal SC, Pal A, Ye Y, Lin Q, Zhang Z, Xiang S, Das MC. Chem Eur J, 2019, 25: 1691–1695

    Article  CAS  PubMed  Google Scholar 

  49. Huang L, Wang L, Zhao Y, Huang L, Bi J, Zou G, Lin Z, Gao D. Dalton Trans, 2020, 49: 5440–5444

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21901133, 22071125, 22071126, 21571111), and Key Research and Development Project of Shandong Province (2019GGX102006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Xiang Hu or Guo-Ming Wang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wei, WJ., Li, Q. et al. Light enhanced proton conductivity in a terbium phosphonate photochromic chain complex. Sci. China Chem. 64, 1170–1176 (2021). https://doi.org/10.1007/s11426-021-9976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-9976-7

Navigation