Skip to main content
Log in

Hexnut[12]arene and its derivatives: Synthesis, host-guest properties, and application as nonporous adaptive crystals

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hexnut[12]arene (HN[12]) and its derivatives, a new class of sixfold macrocyclic arenes, were designed and synthesized in reasonable yield by a one-pot reaction at room temperature using dimethoxymethane as a methylene source. HN[12], which bears a large, symmetric, and rigid cavity, was easily functionalized at both the methylene bridges and the hydroquinone units. A water-soluble fluorescent HN[12] was synthesized and used as a host to encapsulate benzyl viologen dichloride in water with a high binding affinity of (3.4 ± 0.2) × 106 M−1. The nonporous adaptive crystal (NAC) of HN[12] was found to capture not only inorganic molecules (iodine) but also trace amounts of large organic molecules (basic fuchsine) from water, which greatly expands the scope of NACs for adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Z, Nalluri SKM, Stoddart JF. Chem Soc Rev, 2017, 46: 2459–2478

    Article  CAS  PubMed  Google Scholar 

  2. Gutsche CD. Acc Chem Res, 2002, 16: 161–170

    Article  Google Scholar 

  3. Song N, Yang YW. Sci China Chem, 2014, 57: 1185–1198

    Article  CAS  Google Scholar 

  4. Zhu H, Li Q, Khalil-Cruz LE, Khashab NM, Yu G, Huang F. Sci China Chem, 2021, 64: 688–700

    Article  CAS  Google Scholar 

  5. Liu Y, Wang H, Liu P, Zhu H, Shi B, Hong X, Huang F. Angew Chem Int Ed, 2021, 60: 5766–5770

    Article  CAS  Google Scholar 

  6. Lei SN, Xiao H, Zeng Y, Tung CH, Wu LZ, Cong H. Angew Chem Int Ed, 2020, 59: 10059–10065

    Article  CAS  Google Scholar 

  7. Han XN, Han Y, Chen CF. J Am Chem Soc, 2020, 142: 8262–8269

    Article  CAS  PubMed  Google Scholar 

  8. Mao L, Hu Y, Tu Q, Jiang WL, Zhao XL, Wang W, Yuan D, Wen J, Shi X. Nat Commun, 2020, 11: 5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu X, Wu W, Zhou D, Su D, Zhong Z, Yang C. CCS Chem, 2021, 1945–1953

  10. Zhou J, Yu G, Li Q, Wang M, Huang F. J Am Chem Soc, 2020, 142: 2228–2232

    Article  CAS  PubMed  Google Scholar 

  11. Yang W, Samanta K, Wan X, Thikekar TU, Chao Y, Li S, Du K, Xu J, Gao Y, Zuilhof H, Sue ACH. Angew Chem Int Ed, 2020, 59: 3994–3999

    Article  CAS  Google Scholar 

  12. Della Sala P, Del Regno R, Talotta C, Capobianco A, Hickey N, Geremia S, De Rosa M, Spinella A, Soriente A, Neri P, Gaeta C. J Am Chem Soc, 2020, 142: 1752–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu JR, Yang YW. J Am Chem Soc, 2019, 141: 12280–12287

    Article  CAS  PubMed  Google Scholar 

  14. Jia F, Hupatz H, Yang LP, Schröder HV, Li DH, Xin S, Lentz D, Witte F, Xie X, Paulus B, Schalley CA, Jiang W. J Am Chem Soc, 2019, 141: 4468–4473

    Article  CAS  PubMed  Google Scholar 

  15. Shi TH, Guo QH, Tong S, Wang MX. J Am Chem Soc, 2020, 142: 4576–4580

    Article  CAS  PubMed  Google Scholar 

  16. Xie J, Li X, Wang S, Li A, Jiang L, Zhu K. Nat Commun, 2020, 11: 3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li B, Wang B, Huang X, Dai L, Cui L, Li J, Jia X, Li C. Angew Chem Int Ed, 2019, 58: 3885–3889

    Article  Google Scholar 

  18. Wang MX. Sci China Chem, 2018, 61: 993–1003

    Article  CAS  Google Scholar 

  19. Liu SH, Hou H, Deng ZY, Wang XR, Tang C, Ju YY, Feng LB, Tan YZ. Sci China Chem, 2020, 63: 1626–1631

    Article  CAS  Google Scholar 

  20. Strutt NL, Zhang H, Schneebeli ST, Stoddart JF. Acc Chem Res, 2014, 47: 2631–2642

    Article  CAS  PubMed  Google Scholar 

  21. Ling L, Jiang S, Lan S, Zhang C, Ma D. Org Lett, 2021, 23: 9327–9331

    Article  CAS  PubMed  Google Scholar 

  22. Fu S, An G, Sun H, Luo Q, Hou C, Xu J, Dong Z, Liu J. Chem Commun, 2017, 53: 9024–9027

    Article  CAS  Google Scholar 

  23. Klenke B, Näther C, Friedrichsen W. Tetrahedron Lett, 1998, 39: 8967–8968

    Article  CAS  Google Scholar 

  24. Kumar S, Chawla HM, Varadarajan R. Tetrahedron Lett, 2002, 43: 7073–7075

    Article  CAS  Google Scholar 

  25. Han B, Wang X, Gao Y, Bai M. Chem Eur J, 2016, 22: 16037–16041

    Article  CAS  PubMed  Google Scholar 

  26. Han B, Zhu L, Wang X, Bai M, Jiang J. Chem Commun, 2018, 54: 837–840

    Article  CAS  Google Scholar 

  27. Carroll LT, Hill PA, Ngo CQ, Klatt KP, Fantini JL. Tetrahedron, 2013, 69: 5002–5007

    Article  CAS  Google Scholar 

  28. Hu XB, Chen Z, Chen L, Zhang L, Hou JL, Li ZT. Chem Commun, 2012, 48: 10999–11001

    Article  CAS  Google Scholar 

  29. Jie K, Zhou Y, Li E, Huang F. Acc Chem Res, 2018, 51: 2064–2072

    Article  CAS  PubMed  Google Scholar 

  30. Wu JR, Yang YW. Angew Chem Int Ed, 2021, 60: 1690–1701

    Article  CAS  Google Scholar 

  31. Barbour LJ. Chem Commun, 2006, 1163–1168

  32. Ripmeester JA, Enright GD, Ratcliffe CI, Udachin KA, Moudrakovski IL. Chem Commun, 2006, 4986–4996

  33. Atwood JL, Barbour LJ, Jerga A, Schottel BL. Science, 2002, 298: 1000–1002

    Article  CAS  PubMed  Google Scholar 

  34. Morohashi N, Shibata O, Hattori T. Chem Lett, 2012, 41: 1412–1413

    Article  CAS  Google Scholar 

  35. Morohashi N, Hattori T. J Incl Phenom Macrocycl Chem, 2018, 90: 261–277

    Article  CAS  Google Scholar 

  36. Ogoshi T, Sueto R, Hamada Y, Doitomi K, Hirao H, Sakata Y, Akine S, Kakuta T, Yamagishi TA. Chem Commun, 2017, 53: 8577–8580

    Article  CAS  Google Scholar 

  37. Ogoshi T, Saito K, Sueto R, Kojima R, Hamada Y, Akine S, Moeljadi AMP, Hirao H, Kakuta T, Yamagishi TA. Angew Chem Int Ed, 2018, 57: 1592–1595

    Article  CAS  Google Scholar 

  38. Jie K, Liu M, Zhou Y, Little MA, Bonakala S, Chong SY, Stephenson A, Chen L, Huang F, Cooper AI. J Am Chem Soc, 2017, 139: 2908–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jie K, Liu M, Zhou Y, Little MA, Pulido A, Chong SY, Stephenson A, Hughes AR, Sakakibara F, Ogoshi T, Blanc F, Day GM, Huang F, Cooper AI. J Am Chem Soc, 2018, 140: 6921–6930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sheng X, Li E, Zhou Y, Zhao R, Zhu W, Huang F. J Am Chem Soc, 2020, 142: 6360–6364

    Article  CAS  PubMed  Google Scholar 

  41. Ogoshi T, Sueto R, Yoshikoshi K, Sakata Y, Akine S, Yamagishi T. Angew Chem Int Ed, 2015, 54: 9849–9852

    Article  CAS  Google Scholar 

  42. Wu JR, Li B, Yang YW. Angew Chem Int Ed, 2020, 59: 2251–2255

    Article  CAS  Google Scholar 

  43. Li Q, Jie K, Huang F. Angew Chem Int Ed, 2020, 59: 5355–5358

    Article  CAS  Google Scholar 

  44. Yaseen DA, Scholz M. Int J Environ Sci Technol, 2018, 16: 1193–1226

    Article  Google Scholar 

  45. Cao D, Kou Y, Liang J, Chen Z, Wang L, Meier H. Angew Chem Int Ed, 2009, 48: 9721–9723

    Article  CAS  Google Scholar 

  46. Xu K, Zhang ZY, Yu C, Wang B, Dong M, Zeng X, Gou R, Cui L, Li C. Angew Chem Int Ed, 2020, 59: 7214–7218

    Article  CAS  Google Scholar 

  47. Takemura H. Curr Org Chem, 2009, 13: 1633–1653

    Article  CAS  Google Scholar 

  48. Cheng XJ, Liang LL, Chen K, Ji NN, Xiao X, Zhang JX, Zhang YQ, Xue SF, Zhu QJ, Ni XL, Tao Z. Angew Chem, 2013, 125: 7393–7396

    Article  Google Scholar 

  49. Guex N, Peitsch MC. Electrophoresis, 1997, 18: 2714–2723

    Article  CAS  Google Scholar 

  50. Nau WM, Florea M, Assaf KI. Isr J Chem, 2011, 51: 559–577

    Article  CAS  Google Scholar 

  51. Yang X, Zhao Z, Zhang X, Liu S. Sci China Chem, 2018, 61: 787–791

    Article  CAS  Google Scholar 

  52. Szejtli J. J Mater Chem, 1997, 7: 575–587

    Article  CAS  Google Scholar 

  53. Xue M, Yang Y, Chi X, Zhang Z, Huang F. Acc Chem Res, 2012, 45: 1294–1308

    Article  CAS  PubMed  Google Scholar 

  54. Zhang D, Tang H, Zhang G, Wang L, Cao D. Chem Commun, 2021, 57: 6562–6565

    Article  CAS  Google Scholar 

  55. Zhang D, Cheng J, Wei L, Song W, Wang L, Tang H, Cao D. J Phys Chem Lett, 2020, 11: 2021–2026

    Article  CAS  PubMed  Google Scholar 

  56. Neta G, Hatch M, Kitahara CM, Ostroumova E, Bolshova EV, Tereschenko VP, Tronko MD, Brenner AV. Radiat Res, 2014, 181: 293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther Iii GW, Lu Z, Jonsson M, Kloo L. Angew Chem Int Ed, 2011, 50: 11598–11620

    Article  Google Scholar 

  58. Dong Z, Wang D, Liu X, Pei X, Chen L, Jin J. Mater Chem A, 2014, 2: 5034–5040

    Article  CAS  Google Scholar 

  59. Zhai Y, Dou Y, Liu X, Park SS, Ha CS, Zhao D. Curr Alzheimer Resbon, 2011, 49: 545–555

    CAS  Google Scholar 

  60. Qiao H, Zhou Y, Yu F, Wang E, Min Y, Huang Q, Pang L, Ma T. Chemosphere, 2015, 141: 297–303

    Article  CAS  PubMed  Google Scholar 

  61. Khan TA, Khan EA, Shahjahan EA. Appl Clay Sci, 2015, 107: 70–77

    Article  CAS  Google Scholar 

  62. Cooksey C, Dronsfield A. Biotech Histochem, 2015, 90: 288–293

    Article  CAS  PubMed  Google Scholar 

  63. Ho YS, Ng JCY, McKay G. Sep Purif Methods, 2000, 29: 189–232

    Article  CAS  Google Scholar 

  64. Guo X, Wang J. J Mol Liquids, 2019, 288: 111100

    Article  CAS  Google Scholar 

  65. Jie K, Zhou Y, Li E, Li Z, Zhao R, Huang F. Am Chem Soc, 2017, 139: 15320–15323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071066, 21772045), the National Key Research and Development Program of China (2016YFA0602900), the Guangdong Natural Science Foundation, China (2018B030311008, 2018A0303130007, 2019A1515111079, 2021A1515010183), the Guangzhou Science and Technology Project (202002030203, 201902010063), the Postdoctoral Science Foundation of China (2020M672624), the Fundamental Research Funds of the State Key Laboratory of Luminescent Materials and Devices in 2020 (105216000000190044), and the SCUT “Xinghua Scholar Talent Program” (for HT). The authors thank Prof. Yiwei Zhang (SCUT) for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Tang or Derong Cao.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Gao, B., Tang, H. et al. Hexnut[12]arene and its derivatives: Synthesis, host-guest properties, and application as nonporous adaptive crystals. Sci. China Chem. 65, 539–545 (2022). https://doi.org/10.1007/s11426-021-1186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1186-2

Navigation