Skip to main content
Log in

Selective guest inclusion by crystals of calixarenes: potential for application as separation materials

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Recently, much attention has been devoted towards the development of methods for the capture and separation of inorganic gases and organic compounds with high selectivity and efficiency using nanoporous materials. Unlike metal–organic frameworks and covalent organic network polymer, nanoporous molecular crystals (NMCs) do not have extended network structures through coordination or covalent bonding. Instead, they are composed of discrete organic molecules with only weak noncovalent interactions between them. Calixarenes, used as artificial hosts for molecular recognition, constitute a representative class of NMCs that exhibit “porosity without pores.” Despite the absence of empty-channels, calixarene crystals can absorb various inorganic gases and organic compounds, thereby undergoing a guest-induced structural change. Thus, because of their ability to precisely discriminate between molecules of similar sizes and structures, such NMCs show great potential for application as separation materials. This review summarizes reports on the absorption and inclusion of inorganic gases and organic molecules with crystals of calixarenes and their derivatives and discusses their potential as separation materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Cheetham, A.K., Férey, G., Loiseau, T.: Open-framework inorganic materials. Angew. Chem. Int. Ed. 38(22), 3268–3292 (1999)

    Article  CAS  Google Scholar 

  2. Tao, Y., Kanoh, H., Abrams, L., Kaneko, K.: Mesopore-modified zeolites: preparation, characterization, and applications. Chem. Rev. 106(3), 896–910 (2006)

    Article  CAS  Google Scholar 

  3. Caro, J., Noack, M.: Zeolite membranes–Recent developments and progress. Microporous Mesoporous Mater. 115(3), 215–233 (2008)

    Article  CAS  Google Scholar 

  4. Yaghi, O.M., O’Keeffe, M., Chae, H.K., Eddaoudi, M., Kim, J.: Reticular synthesis and the design of new materials. Nature 423(12), 705–714 (2003)

    Article  CAS  Google Scholar 

  5. Kitagawa, S., Kitaura, R., Noro, S.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43(18), 2334–2375 (2004)

    Article  CAS  Google Scholar 

  6. Férey, G.: Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37(1), 191–214 (2008)

    Article  Google Scholar 

  7. Murray, L.J., Dincă, M., Long, J.R.: Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38(5), 1294–1314 (2009)

    Article  CAS  Google Scholar 

  8. Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38(5), 1477–1504 (2009)

    Article  CAS  Google Scholar 

  9. Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Hern, Z.R., Bae, T.-H., Long, J.R.: Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112(2), 724–781 (2012)

    Article  CAS  Google Scholar 

  10. Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.-W.: Hydrogen storage in metal–organic frameworks. Chem. Rev. 112(2), 782–835 (2012)

    Article  CAS  Google Scholar 

  11. Chen, B., Xiang, S., Qian, G.: Metal organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 43(8), 1115–1124 (2010)

    Article  CAS  Google Scholar 

  12. Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M.: The chemistry and applications of metal–organic frameworks. Science 341(6149), 1230444 (2013)

    Article  CAS  Google Scholar 

  13. Feng, X., Ding, X., Jiang, D.: Covalent organic frameworks. Chem. Soc. Rev. 41(18), 6010–6022 (2012)

    Article  CAS  Google Scholar 

  14. Ding, S.-Y., Wang, W.: Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42(2), 548–568 (2013)

    Article  CAS  Google Scholar 

  15. Waller, P.J., Gándara, F., Yaghi, O.M.: Chemistry of covalent organic frameworks. Acc. Chem. Res. 48(12), 3053–3063 (2015)

    Article  CAS  Google Scholar 

  16. Daramola, M.O., Burger, A.J., Pera-Titus, M., Giroir-Fendler, A., Miachon, S., Dalmon, A.-A., Lorenzen, L.: Separation and isomerization of xylenes using zeolite membranes: a short overview. Asia Pac. J. Chem. Eng. 5(6), 815–837 (2010)

    Article  CAS  Google Scholar 

  17. Santos, K.A.O., Dantas Neto, A.A., Moura, M.C.P.A., Castro Dantas, T.N.: Separation of xylene isomers through adsorption on microporous materials: a review. Braz. J. Petrol. Gas 5(4), 225–268 (2011)

    Google Scholar 

  18. Mckeown, N.B.: Nanoporous molecular crystals. J. Mater. Chem. 20(47), 10588–10597 (2010)

    Article  CAS  Google Scholar 

  19. Holst, J.R., Trewin, A., Cooper, A.I.: Porous organic molecules. Nat. Chem. 2, 915–920 (2010)

    Article  CAS  Google Scholar 

  20. Tian, J., Thallapally, P.K., McGrail, B.P.: Porous organic molecular materials. CrystEngComm 14(6), 1909–1919 (2012)

    Article  CAS  Google Scholar 

  21. Mastalerz, M.: Permanent porous materials from discrete organic molecules–towards ultra-high surface areas. Chem. Eur. J. 18(33), 10082–10091 (2012)

    Article  CAS  Google Scholar 

  22. Hashim, M.I., Hsu, C.-W., Le, H.T., Miljanić, O.Š.: Organic molecules with porous crystal structures. Synlett 27(13), 1907–1918 (2016)

    Article  CAS  Google Scholar 

  23. Cooper, A.I.: Porous molecular solids and liquids. ACS Cent. Sci. 3(6), 544–553 (2017)

    Article  CAS  Google Scholar 

  24. Barbour, L.J.: Crystal porosity and the burden of proof. Chem. Commun. 42(11), 1163–1168 (2006)

    Article  CAS  Google Scholar 

  25. Henkelis, J.J., Carruthers, C.J., Chambers, S.E., Clowes, R., Cooper, A.I., Fisher, J., Hardie, M.J.: Metallo-cryptophanes decorated with bis-N-heterocyclic carbene ligands: self-assembly and guest uptake into a nonporous crystalline lattice. J. Am. Chem. Soc. 136(41), 14393–14396 (2014)

    Article  CAS  Google Scholar 

  26. Kane, C.M., Ugono, O., Barbour, L.J., Holman, K.T.: Many simple molecular cavitands are intrinsically porous (zero-dimensional pore) materials. Chem. Mater. 27(21), 7337–7354 (2015)

    Article  CAS  Google Scholar 

  27. Kane, C.M., Banisafar, A., Dougherty, T.P., Barbour, L.J., Holman, K.T.: Enclathration and confinement of small gases by the intrinsically 0D porous molecular solid, Me, H, SiMe2. J. Am. Chem. Soc. 138(13), 4377–4392 (2016)

    Article  CAS  Google Scholar 

  28. Ogoshi, T., Sueto, R., Yoshikoshi, K., Sakata, Y., Akine, S., Yamagishi, T.: Host–guest complexation of perethylated pillar[5]arene with alkanes in the crystal state. Angew. Chem. Int. Ed. 54(34), 9849–9852 (2015)

    Article  CAS  Google Scholar 

  29. Gutsche, C.D.: Calixarenes Revisited. The Royal Society of Chemistry, Cambridge (1998)

    Google Scholar 

  30. Mandolini, L., Ungaro, R. (eds.): Calixarenes in Action. Imperial College Press, London (2000)

    Google Scholar 

  31. Asfari, Z., Böhmer, V., Harrowfield, J. M., Vicens, J. (eds.): Calixarenes 2001. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  32. Neri, P., Sessler, L. W., Wang, M.-X. (eds.): Calixarenes and Beyond. Springer, Berlin (2016)

    Google Scholar 

  33. Andreetti, G.D., Ungaro, R., Pochini, A.: Crystal and molecular structure of cyclo{quater[(5-t-butyl-2-hydroxy-1,3-pheny1ene)methylenel) toluene (1:1) clathrate. J. Chem. Soc. Chem. Commun. 22, 1005–1007 (1979)

    Article  Google Scholar 

  34. Ohba, Y., Moriya, K., Sone, T.: Synthesis and inclusion properties of sulfur-bridged analogs of acyclic phenol-formaldehyde oligomers. Bull. Chem. Soc. Jpn. 64(2), 576–582 (1991)

    Article  CAS  Google Scholar 

  35. Iki, N., Kabuto, C., Fukushima, T., Kumagai, H., Takeya, H., Miyanari, S., Miyashi, T., Miyano, S.: Synthesis of p-tert-butylthiacalix[4]arene and its inclusion property. Tetrahedron 56(11), 1437–1443 (2000)

    Article  CAS  Google Scholar 

  36. Ripmeester, J.A., Enright, G.D., Ratcliffe, C.I., Udachin, K.A., Moudrakovski, I.L.: What we have learned from the study of solid p-tert-butylcalix[4]arene compounds. Chem. Commun. 4986–4996 (2006)

  37. Suzuki, T., Nakashima, K., Shinkai, S.: Very convenient and efficient purification method for fullerene (C60) with 5,11,17,23,29,35,41,47-octa-tert-butylcalix[8]arene-49,50,51,52,53,54,55,56-octol. Chem. Lett. 23(4), 699–702 (1994)

    Article  Google Scholar 

  38. Atwood, J.L., Koutsantonis, G.A., Raston, C.L.: Purification of C60 and C70 by selective complexation with calixarenes. Nature 368, 229–231 (1994)

    Article  CAS  Google Scholar 

  39. Yoshimura, K., Fukazawa, Y.: C-H acidity effect of guest molecules on the complexation with monomethyl ether of monodeoxycalix[4]arene. Tetrahedron Lett. 37(9), 1435–1438 (1996)

    Article  CAS  Google Scholar 

  40. Arena, G., Contino, A., Gulino, F.G., Magri, A., Sciotto, D., Ungaro, R.: Complexation of small neutral organic molecules by water soluble calix[4]arenes. Tetrahedron Lett. 41(48), 9327–9330 (2000)

    Article  CAS  Google Scholar 

  41. Kon, N., Iki, N., Miyano, S.: Inclusion behavior of water-soluble thiacalix- and calix[4]arenes towards substituted benzenes in aqueous solution. Org. Biomol. Chem. 1(4), 751–755 (2003)

    Article  CAS  Google Scholar 

  42. Arena, G., Contino, A., Longo, E., Spoto, G., Arduini, A., Pochini, A., Secchi, A., Massera, C., Ugozzoli, F.: An integrated approach to the study of the recognition of guests containing CH3 and CH2 acid groups by differently rigidified cone p-tert-butylcalix[4]arene derivatives. New J. Chem. 28(1), 56–61 (2004)

    Article  CAS  Google Scholar 

  43. Yamada, M., Rjiv Gandhi, M., Uma Maheswara Rao, K., Hamada, F.: Thiacalixarenes: emergent supramolecules in crystal engineering and molecular recognition. J. Incl. Phenom. Macrocycl. Chem. 85(1–2), 1–18 (2016)

    Article  CAS  Google Scholar 

  44. Ovsyannikov, A., Solovieva, S., Antipin, I., Ferlay, S.: Coordination polymers based on calixarene derivatives: structures and properties. Coord. Chem. Rev. 352, 151–186 (2017)

    Article  CAS  Google Scholar 

  45. Atwood, J.L., Barbour, L.J., Jerga, A., Schottel, B.L.: Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298(5595), 1000–1002 (2002)

    Article  CAS  Google Scholar 

  46. Brouwer, E.B., Udachin, K.A., Enright, G.D., Ripmeester, J.A., Ooms, K.J., Halchuk, P.A.: Self-inclusion and paraffin intercalation of the p-tert-butylcalix[4]arene host: a neutral organic clay mimic. Chem. Commun. 37(6), 565–566 (2001)

    Article  Google Scholar 

  47. Albrecht, M., Lutz, M., Spek, A.L., van Koten, G.: Organoplatinum crystals for gas-triggered switches. Nature 406, 970–974 (2000)

    Article  CAS  Google Scholar 

  48. Dalrymple, S.A., Shimizu, G.K.H.: Selective guest inclusion in a non-porous H-bonded host. Chem. Commun. 42(9), 956–958 (2006)

    Article  CAS  Google Scholar 

  49. Espallargas, G.M., Hippler, M., Florence, A.J., Fernandes, P., van de Streek, J., Brunelli, M., David, W.I.F., Shankland, K., Brammer, L.: Reversible gas uptake by a nonporous crystalline solid involving multiple changes in covalent bonding. J. Am. Chem. Soc. 129(50), 15606–15614 (2007)

    Article  CAS  Google Scholar 

  50. Tian, J., Thallapally, P.K., Dalgarno, S.J., Atwood, J.L.: Free transport of water an CO2 in nonporous hydrophobic clarithromycin form II crystals. J. Am. Chem. Soc. 131(37), 13216–13217 (2009)

    Article  CAS  Google Scholar 

  51. Metrangolo, P., Carcenac, Y., Lahtinen, M., Pilati, T., Rissanen, K., Vij, A., Resnati, G.: Nonporous organic solids capable of dynamically resolving mixtures of diiodoperfluoroalkanes. Science 323(5290), 1461–1464 (2009)

    Article  CAS  Google Scholar 

  52. Naka, K., Kato, T., Watase, S., Matsukawa, K.: Organic vapor triggered repeatable on-off crystalline-state luminescence swithching. Inorg. Chem. 51(8), 4420–4422 (2012)

    Article  CAS  Google Scholar 

  53. Kumagai, H., Hasegawa, M., Miyanari, S., Sugawa, Y., Sato, Y., Hori, T., Ueda, S., Kamiyama, H., Miyano, S.: Facile synthesis of p-tert-buthylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 38(22), 3971–3972 (1997)

    Article  CAS  Google Scholar 

  54. Lhoták, P.: Chemistry of thiacalixarenes. Eur. J. Org. Chem. 2004(8), 1675–1692 (2004)

    Article  CAS  Google Scholar 

  55. Parola, S., Desroches, C.: Recent advances in the functionalizations of the upper rims of thiacalix[4]arenes. A review. Collect. Czech. Chem. Commun. 69(5), 966–983 (2004)

    Article  CAS  Google Scholar 

  56. Morohashi, N., Narumi, F., Iki, N., Hattori, T., Miyano, S.: Thiacalixarenes. Chem. Rev. 106(12), 5291–5316 (2006)

    Article  CAS  Google Scholar 

  57. Iki, N.: Non-covalent strategy for activating separation and detection functionality by use of the multifunctional host molecule thiacalixarene. J. Incl. Phenom. Macrocycl. Chem. 64(1–2), 1–13 (2009)

    Article  CAS  Google Scholar 

  58. Kumar, R., Lee, Y.O., Bhalla, V., Kumar, M., Kim, J.S.: Recent developments of thiacalixarene based molecular motifs. Chem. Soc. Rev. 43(13), 4824–4870 (2014)

    Article  CAS  Google Scholar 

  59. Morohashi, N., Noji, S., Nakayama, H., Kudo, Y., Tanaka, S., Kabuto, C., Hattori, T.: Unique inclusion properties of crystalline powder p-tert-butylthiacalix[4]arene toward alcohols and carboxylic acids. Org. Lett. 13(13), 3292–3295 (2011)

    Article  CAS  Google Scholar 

  60. Atwood, J.L., Barbour, L.J., Jerga, A.: A new type of material for the recovery of hydrogen from gas mixtures. Angew. Chem. Int. Ed. 43(22), 2948–2950 (2004)

    Article  CAS  Google Scholar 

  61. Atwood, J.L., Barbour, L.J., Thallapally, P.K., Wirsig, T.B.: A crystalline organic substrate absorbs methane under STP conditions. Chem. Commun. 41(1), 51–53 (2005)

    Article  CAS  Google Scholar 

  62. Thallapally, P.K., Wirsig, T.B., Barbour, L.J., Atwood, J.L.: Crystal engineering of nonporous organic solids for methane sorption. Chem. Commun. 41(35), 4420–4422 (2005)

    Article  CAS  Google Scholar 

  63. Thallapally, P.K., Dobrazańska, L., Grimgrich, T.R., Wirsig, T.B., Barbour, L.J., Atwood, J.L.: Acetylene absorption and binding in a nonporous crystal lattice. Angew. Chem. Int. Ed. 45(39), 6506–6509 (2006)

    Article  CAS  Google Scholar 

  64. Thallapally, P.K., McGrail, B.P., Atwood, J.L.: Sorption of nitrogen oxides in a nonporous crystal. Chem. Commun. 43(15), 1521–1523 (2007)

    Article  CAS  Google Scholar 

  65. Thallapally, P.K., McGrail, B.P., Dalgarno, S.J., Schaef, H.T., Tian, J., Atwood, J.L.: Gas-induced transformation and expansion of a non-porous organic solid. Nat. Mater. 7, 146–150 (2008)

    Article  CAS  Google Scholar 

  66. Enright, G.D., Udachin, K.A., Moudrakovski, I.L., Ripmeester, J.A.: Thermally programmable gas storage and release in single crystals of an organic van der Waals host. J. Am. Chem. Soc. 125(33), 9896–9897 (2003)

    Article  CAS  Google Scholar 

  67. Brouwer, D.H., Moudrakovski, I.L., Udachin, K.A., Enright, G.D., Ripmeester, J.A.: Guest loading and multiple phases in single crystals of the van der waals host p-tert-butylcalix[4]arene. Cryst. Growth Des. 8(6), 1878–1885 (2008)

    Article  CAS  Google Scholar 

  68. Udachin, K.A., Moudrakovski, I.L., Enright, G.D., Ratcliffe, C.I., Ripmeester, J.A.: Loading-dependent structures of CO2 in the flexible molecular van der Waals host p-tert-butylcalix[4]arene with 1:1 and 2:1 guest–host stoichiometries. Phys. Chem. Chem. Phys. 10(31), 4636–4643 (2008)

    Article  CAS  Google Scholar 

  69. Alavi, S., Woo, T.K., Sirjoosingh, A., Lang, S., Moudrakovski, I., Ripmeester, J.A.: Hydrogen adsorption and diffusion in p-tert-butylcalix[4]arene: an experimental and molecular simulation study. Chem. Eur. J. 16(38), 11689–11696 (2010)

    Article  CAS  Google Scholar 

  70. Gorbatchuk, V.V., Tsifarkin, A.G., Antipin, I.S., Solomonov, B.N., Konovalov, A.I., Seidel, J., Baitalov, F.: Thermodynamic comparison of molecular recognition of vaporous guests by solid calixarene and diol hosts. J. Chem. Soc., Perkin Trans. 2(11), 2287–2294 (2000)

    Article  Google Scholar 

  71. Gorbatchuk, V.V., Tsifarkin, A.G., Antipin, I.S., Solomonov, B.N., Konovalov, A.I., Lhoták, P., Stibor, I.: Nonlinear structure–affinity relationships for vapor guest inclusion by solid calixarenes. J. Phys. Chem. B 106(23), 5845–5851 (2002)

    Article  CAS  Google Scholar 

  72. Barbara, S., Tamke, R.L., Wainwright, K.P.: Removal of trihalomethanes from chlorinated water using calixarenes as selective molecular receptors. Chem. Ind. (23), 804–805 (1990)

  73. Iki, N., Fujimoto, T., Miyano, S.: A new water-soluble host molecule derived from thiacalixarene. Chem. Lett.27(7), 625–626 (1998)

    Article  Google Scholar 

  74. Iki, N., Fujimoto, T., Shindo, T., Koyama, K., Miyano, S.: Almost complete removal of trace amount of halogenated organic compounds in water: an approach by use of a combination of water-soluble thiacalixarene and ion-exchange resins. Chem. Lett. 28(8), 777–778 (1999)

    Article  Google Scholar 

  75. Tsue, H., Takimoto, T., Kikuchi, C., Yanase, H., Takahashi, H., Amezawa, K., Ishibashi, K., Tanaka, S., Tamura, R.: Adsorptive removal of bisphenol A by calix[4]crown derivatives: significant contribution of hydrogen bonding interaction to the control of adsorption behavior. Chem. Lett. 34(7), 1030–1031 (2005)

    Article  CAS  Google Scholar 

  76. Tsue, H., Takimoto, T., Kikuchi, C., Yanase, H., Ishibashi, K., Amezawa, K., Miyashita, H., Miyafuji, H., Tanaka, S., Tamura, R.: Adsorptive removal of endocrine disrupting chemicals by calix[4]crown oligomer: significant improvement of removal efficiency by oligomerization. Chem. Lett. 35(3), 254–255 (2006)

    Article  CAS  Google Scholar 

  77. Morohashi, N., Shibata, O., Hattori, T.: Absorption of chlorinated hydrocarbons dissolved in water with pellets made of p-tert-butylcalix[4]arene and silica gel. Chem. Lett. 41(11), 1412–1413 (2012)

  78. Tsue, H., Ishibashi, K., Tokita, S., Takahashi, H., Matsui, K., Tamura, R.: Azacalix[6]arene hexamethyl ether: synthesis, structure, and selective uptake of carbon dioxide in the solid state. Chem. Eur. J. 14(20), 6125–6134 (2008)

    Article  CAS  Google Scholar 

  79. Tsue, H., Matsui, K., Ishibashi, K., Takahashi, H., Tokita, S., Ono, K., Tamura, R.: Azacalix[7]arene heptamethyl ether: preparation, nanochannel crystal structure, and selective adsorption of carbon dioxide. J. Org. Chem. 73(19), 7748–7755 (2008)

    Article  CAS  Google Scholar 

  80. Tsue, H., Ono, K., Tokita, S., Ishibashi, K., Matsui, K., Takahashi, H., Miyata, K., Takahashi, D., Tamura, R.: Spontaneous and selective CO2 sorption under ambient conditions in seemingly nonporous molecular crystal of azacalix[5]arene pentamethyl ether. Org. Lett. 13(3), 490–493 (2011)

    Article  CAS  Google Scholar 

  81. Tsue, H., Takahashi, H., Ishibashi, K., Inoue, R., Shimizu, S., Takahashi, D., Tamura, R.: Crystallographic analysis of CO2 sorption state in seemingly nonporous molecular crystal of azacalix[4]arene tetramethyl ether exhibiting highly selective CO2 uptake. CrystEngComm 14(3), 1021–1026 (2012)

    Article  CAS  Google Scholar 

  82. Tsue, H.: Nonporous but yet gas-sorbing molecular crystals formed by macrocyclic compounds with nitrogen-bridges. Nippon Kessho Gakkaishi 55(1), 37–41 (2013)

    Article  CAS  Google Scholar 

  83. Morohashi, N., Nanbu, K., Tonosaki, A., Noji, S., Hattori, T.: Comparison of inclusion properties between p-tert-butylcalix[4]arene and p-tert-butylthiacalix[4]arene towards primary alcohols in crystals. CrystEngComm 17(26), 4799–4808 (2015)

    Article  CAS  Google Scholar 

  84. Morohashi, N., Ebata, K., Hiroko, N., Noji, S., Hattori, T.: Selective inclusion of carboxylic acids with a metastable crystal polymorph of p-tert-butylthiacalix[4]arene. Cryst. Growth Des. 17(2), 891–900 (2017)

    Article  CAS  Google Scholar 

  85. Morohashi, N., Shibata, O., Ikuko, M., Kitamoto, Y., Ebata, K., Nakayama, H., Hattori, T.: Inclusion of methylamines with the crystal of p-tert-butylthiacalix[4]arene: inclusion selectivity and its switching by solvent polarity. Cryst. Growth Des. 16(8), 4671–4678 (2016)

    Article  CAS  Google Scholar 

  86. Vicens, J., Armah, A.E., Fujii, S., Tomita, K.-I.: Separation of xylenes by extractive crystallization with calixarenes. J. Inclusion Phenom. Mol. Recognit. Chem. 10(1), 159–163 (1991)

    Article  CAS  Google Scholar 

  87. Morohashi, N., Tonosaki, A., Kitagawa, T., Sasaki, T., Ebata, K., Hattori, T.: Competitive inclusion of disubstituted benzenes regioisomers with crystals of p-tert-butylcalix[4]arene. Cryst. Growth Des. 17(10), 5038–5043 (2017)

    Article  CAS  Google Scholar 

  88. Iki, N., Morohashi, N., Suzuki, T., Ogawa, S., Aono, M., Kabuto, C., Kumagai, H., Takeya, H., Miyanari, S., Miyano, S.: Crystal structure and inclusion property of p-tert-butylthiacalix[6]arene. Tetrahedron Lett. 41(15), 2587–2590 (2000)

    Article  CAS  Google Scholar 

  89. Kondo, Y., Hamada, F.: Supramolecular assembly of p-tert-butylthiacalix[6]arene with benzylamine complex based on hydrogen bond. Int. J. Soc. Mater. Eng. Res. 13(2), 60–63 (2006)

    Article  CAS  Google Scholar 

  90. Ananchenko, G.S., Udachin, K.A., Pojarova, M., Dubes, A., Ripmeester, J.A., Jebors, S., Coleman, A.W.: Van der Waals nanocapsular complexes of amphiphilic calixarenes. Cryst. Growth Des. 6(9), 2141–2148 (2006)

    Article  CAS  Google Scholar 

  91. Ananchenko, G.S., Udachin, K.A., Dubes, A.D., Ripmeester, J.A., Perrier, T., Coleman, A.W.: Guest exchange in single crystals of van der Waals nanocapsules. Angew. Chem. Int. Ed. 45(10), 1585–1588 (2006)

    Article  CAS  Google Scholar 

  92. Ananchenko, G.S., Udachin, K.A., Pojarova, M., Jebors, S., Anthony, W., Colemanb, A.W., Ripmeester, J.A.: A molecular turnstile in para-octanoyl calix[4]arene nanocapsules. Chem. Commun. 43(7), 707–709 (2007)

    Article  Google Scholar 

  93. Ananchenko, G.S., Moudrakovski, I.L., Coleman, A.W., Ripmeester, J.A.: A channel-free soft-walled capsular calixarene solid for gas adsorption. Angew. Chem. Int. Ed. 47(30), 5616–5618 (2008)

    Article  CAS  Google Scholar 

  94. Gataullina, K.V., Ziganchin, M.A., Stoikov, I.I., Klimovitskii, A.E., Gubaidullin, A.T., Suwińska, K., Gorbatchuk, V.V.: Smart polymorphism of thiacalix[4]arene with long-chain amide containing substituents. Cryst. Growth Des. 17(6), 3512–3527 (2017)

    Article  CAS  Google Scholar 

  95. Morohashi, N., Hayashi, T., Nakamura, Y., Kobayashi, T., Tanaka, S., Hattori, T.: Selective extraction of heavy rare-earth metal ions with a novel calix[4]arene-based diphosphonic acid. Chem. Lett. 41(11), 1520–1522 (2012)

    Article  CAS  Google Scholar 

  96. Hirasawa, K., Tanaka, S., Horiuchi, T., Kobayashi, T., Sato, T., Morohashi, N., Hattori, T.: Pd(II) complexes ligated by 1,3-bis(diphenylphosphino)calix[4]arene: preparation, X-ray structures, and catalyses. Organometallics 35(3), 420–427 (2016)

    Article  CAS  Google Scholar 

  97. Morohashi, N., Katagiri, H., Shimazaki, T., Kitamoto, Y., Tanaka, S., Kabuto, C., Iki, N., Hattori, T., Miyano, S.: Unique inclusion behaviour of 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetraaminothiacalix[4]arene towards small organic molecules. Supramol. Chem. 25(12), 812–818 (2013)

    Article  CAS  Google Scholar 

  98. Dalgarno, S.J., Tian, J., Warren, J.E., Clark, T.E., Makha, M., Raston, C.L., Atwood, J.L.: Calix[5]arene: a versatile sublimate that displays gas sorption properties. Chem. Commun. 43(46), 4848–4850 (2007)

    Article  CAS  Google Scholar 

  99. Martin, A.D., Clark, T.E., Makha, M., Sobolev, A.N., Raston, C.L.: Aromatic solvent specific induced arrays of calix[5]arenes. Cryst. Growth Des. 9(11), 4864–4871 (2009)

    Article  CAS  Google Scholar 

  100. Kajiki, Y., Sekiya, R., Yamasaki, Y., Uemura, Y., Haino, T.: Induced-fit molecular recognition of alkyl chains in p-tert-butylcalix[5]arene in the solid state. Bull. Chem. Soc. Jpn. 89(2), 220–225 (2016)

    Article  CAS  Google Scholar 

  101. Yakimov, A.V., Ziganshin, M.A., Gubaidullin, A.T., Gorbatchuk, V.V.: Metastable tert-butylcalix[6]arene with unusually large tunable free volume for non-threshold enclathration of volatiles. Org. Biomol. Chem. 6(6), 982–985 (2008)

    Article  CAS  Google Scholar 

  102. Tsue, H., Ono, K., Tokita, S., Takahashi, H., Tamura, R.: Solid–gas sorption behavior of a new polymorph of azacalix[5]arene pentamethyl ether as controlled by crystal architecture. CrystEngComm 15(8), 1536–1544 (2013)

    Article  CAS  Google Scholar 

  103. Galyaltdinov, S.F., Ziganshin, M.A., Drapailo, A.B., Gorbatchuk, V.V.: Unusually high selectivity of guest exchange in tert-butylthiacalix[4]arene clathrate producing more thermostable inclusion and memory of guest. J. Phys. Chem. B 116(36), 11379–11385 (2012)

    Article  CAS  Google Scholar 

  104. Kitamoto, Y., Suzuki, K., Morohashi, N., Sakai, K., Hattori, T.: Switching of the diastereomer deposited during the crystallization of N-[(S)-1-phenylethyl]-2′-carbamoyl-1,1′-binaphthalene-2-carboxylic ccid: investigation of the mechanism of dielectrically controlled resolution. J. Org. Chem. 78(2), 597–605 (2013)

    Article  CAS  Google Scholar 

  105. Sakai, K., Sakurai, R., Hirayama, H.: Chiral discrimination controlled by the solvent dielectric constant. Tetrahedron Asymmetry 15(7), 1073–1076 (2004)

    Article  CAS  Google Scholar 

  106. Sakai, K., Sakurai, R., Nohira, H., Tanaka, R., Hirayama, N.: Practical resolution of 1-phenyl-2-(4-methylphenyl)ethylamine using a single resolving agent controlled by the dielectric constant of the solvent. Tetrahedron Asymmetry 15(22), 3495–3500 (2004)

    Article  CAS  Google Scholar 

  107. Sakai, K., Sakurai, R., Hirayama, N.: Molecular mechanism of DCR phenomenon observed in (RS)-1-cyclohexylethylamine–mandelic acid resolution system. Tetrahedron Asymmetry 17(12), 1812–1816 (2006)

    Article  CAS  Google Scholar 

  108. Sakai, K., Sakurai, R., Nohira, H.: New resolution technologies controlled by chiral discrimination mechanisms. Top. Curr. Chem. 269, 199–231 (2007)

    Article  CAS  Google Scholar 

  109. Kitamoto, Y., Kuruma, Y., Suzuki, K., Hattori, T.: Effect of solvent polarity on enantioselectivity in Candida Antarctica lipase B catalyzed kinetic resolution of primary and secondary alcohols. J. Org. Chem. 80(1), 521–527 (2015)

    Article  CAS  Google Scholar 

  110. Galyaltdinov, S.F., Ziganshin, M.A., Gubaidullin, A.T., Vyshnevsky, S.G., Kalchenko, O.I., Gorbatchuk, V.V.: Anti-sieve effect in guest inclusion by thiacalix[4]arene giving a surge in thermal stability of its clathrates prepared by solid-phase guest exchange. CrystEngComm 16(18), 3781–3787 (2014)

    Article  CAS  Google Scholar 

  111. Ramon, G., Jacobs, A., Nassimbeni, L.R., Yav-Kabwit, R.: Inclusion compounds of p-tert-butylcalixarenes: structures, kinetics, and selectivity. Cryst. Growth Des. 11(7), 3172–3182 (2011)

    Article  CAS  Google Scholar 

  112. Erra, L., Tedesco, C., Immediata, I., Gregoli, L., Gaeta, C., Merlini, M., Meneghini, C., Brunelli, M., Fitch, A.N., Neri, P.: Inclusion properties of volatile organic compounds in a calixarene-based organic zeolite. Langmuir 28(22), 8511–8517 (2012)

    Article  CAS  Google Scholar 

  113. Bacchi, A., Carcelli, M., Chiodo, T., Mezzadri, F., Nestola, F., Rossi, A.: Inclusion properties, polymorphism and desolvation kinetics in a new 2-pyridyl iminophenol compound with 1D nanochannels. Cryst. Growth Des. 9(8), 3749–3758 (2009)

    Article  CAS  Google Scholar 

  114. Ramon, G., Jacobs, A., Masuku, L.Z.M., Nassimbeni, L.R.: Selectivity by benzopinacol. CrystEngComm 11, 2332–2337 (2009)

    Article  CAS  Google Scholar 

  115. Nassibeni, L.R.: Physicochemical aspects of host-guest compounds. Acc. Chem. Res. 36(8), 631–637 (2003)

    Article  CAS  Google Scholar 

  116. Morohashi, N., Ebata, K., Hattori, T.: Recovery of host crystals from inclusion crystals of p-tert-butylcalix[4]arene and p-tert-butylthiacalix[4]arene by the treatment with a solvent and/or supercritical CO2. J. Incl. Phenom. Macrocycl. Chem. (in press)

Download references

Acknowledgements

N. M. thanks the organizing committee of Association of Research for Host–Guest and Supramolecular Chemistry (Japan) for giving him ‘‘HGCS Japan Award of Excellence 2017” and the opportunity of writing this review. The authors thank Dr. Y. Kitamoto, Dr. S. Tanaka, and all of the collaborators. Our works were supported by JSPS KAKENHI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naoya Morohashi or Tetsutaro Hattori.

Additional information

This is a paper selected for the “SHGSC Japan Award of Excellence 2017”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morohashi, N., Hattori, T. Selective guest inclusion by crystals of calixarenes: potential for application as separation materials. J Incl Phenom Macrocycl Chem 90, 261–277 (2018). https://doi.org/10.1007/s10847-018-0783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0783-3

Keywords

Navigation