Skip to main content
Log in

Three-primary-color molecular cocrystals showing white-light luminescence, tunable optical waveguide and ultrahigh polarized emission

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Three-primary-color luminescent materials are highly desirable to construct white-light emitting resource, multi-color optical displays, and tunable photonic applications. However, the efficient strategy to establish the three-primary-color systems with unique photofunctionalities is still rather limited, particularly for molecular materials. Herein, we developed a molecular cocrystal route to obtain three-primary-color emissive materials by tuning different donor-acceptor units based on the same chromophore (4,4′-bis(2,5-dimethylstyryl)biphenyl, Bdb). The warm and cold white-light together with multi-color emission in most of visible region can be highly adjusted by rationally tuning different mixture components of three-primary-color cocrystals through an energy transfer mechanism. Furthermore, the blue/green/red emitters endow Bdb molecular cocrystals novel color-tunable photonic properties (such as one-dimensional (1D)/2D optical waveguide, polarized fluorescence, up-conversion luminescence, and amplified spontaneous emission), benefitting from their well-defined micro/nanostructures and high crystallinity. Particularly, the high luminescence quantum yield (82.49%) and polarized anisotropy (0.723) outperform most of state-of-the-art molecular crystalline materials. Therefore, this work supplies an effective way to fabricate new types of three-primary-color phosphors through luminescent cocrystals, which have promising applications in the fields of full-color displays, white-light irradiation, low-dimensional optical polarization, and micro/nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan D, Lu J, Wei M, Qin S, Chen L, Zhang S, Evans DG, Duan X. Adv Funct Mater, 2011, 21: 2497–2505

    Article  CAS  Google Scholar 

  2. Song H, Liu X, Wang B, Tang Z, Lu S. Sci Bull, 2019, 64: 1788–1794

    Article  CAS  Google Scholar 

  3. Lee J, Min K, Park Y, Cho KS, Jeon H. Adv Mater, 2018, 30: 1703506

    Article  Google Scholar 

  4. Lin Y, Wang GE, Hu CL, Feng JH, Li LN, Mao JG. Angew Chem Int Ed, 2019, 58: 13390–13393

    Article  CAS  Google Scholar 

  5. Lin R, Guo Q, Zhu Q, Zhu Y, Zheng W, Huang F. Adv Mater, 2019, 31: 1905079

    Article  CAS  Google Scholar 

  6. Zhang T, Wu Y, Ma X. Chem Eng J, 2021, 412: 128689

    Article  CAS  Google Scholar 

  7. Jiu YD, Liu CF, Wang JY, Lai WY, Jiang Y, Xu WD, Zhang XW, Huang W. Polym Chem, 2015, 6: 8019–8028

    Article  CAS  Google Scholar 

  8. Gao R, Kodaimati MS, Yan D. Chem Soc Rev, 2021, 50: 5564–5589

    Article  CAS  PubMed  Google Scholar 

  9. Ni WX, Li M, Zheng J, Zhan SZ, Qiu YM, Ng SW, Li D. Angew Chem Int Ed, 2013, 52: 13472–13476

    Article  CAS  Google Scholar 

  10. Liu CF, Jiu Y, Wang J, Yi J, Zhang XW, Lai WY, Huang W. Macromolecules, 2016, 49: 2549–2558

    Article  Google Scholar 

  11. Feng HT, Zheng X, Gu X, Chen M, Lam JWY, Huang X, Tang BZ. Chem Mater, 2018, 30: 1285–1290

    Article  CAS  Google Scholar 

  12. Chen Z, Ho CL, Wang L, Wong WY. Adv Mater, 2020, 32: 1903269

    Article  CAS  Google Scholar 

  13. Fang X, Yan D. Sci China Chem, 2018, 61: 397–401

    Article  CAS  Google Scholar 

  14. Du M, Feng Y, Zhu D, Peng T, Liu Y, Wang Y, Bryce MR. Adv Mater, 2016, 28: 5963–5968

    Article  CAS  PubMed  Google Scholar 

  15. Farinola GM, Ragni R. Chem Soc Rev, 2011, 40: 3467

    Article  CAS  PubMed  Google Scholar 

  16. Xu LJ, Lee S, Lin X, Ledbetter L, Worku M, Lin H, Zhou C, Liu H, Plaviak A, Ma B. Angew Chem Int Ed, 2020, 59: 14120–14123

    Article  CAS  Google Scholar 

  17. Zhou C, Zhang S, Gao Y, Liu H, Shan T, Liang X, Yang B, Ma Y. Adv Funct Mater, 2018, 28: 1802407

    Article  Google Scholar 

  18. Zhou Z, Mao Z, Yang Z, Yang T, Zhu L, Long Y, Chi Z, Liu S, Aldred MP, Chen X, Xu J, Zhang Y. Sci China Chem, 2021, 64: 467–477

    Article  CAS  Google Scholar 

  19. Hu J, Li Q, Wang X, Shao S, Wang L, Jing X, Wang F. Angew Chem Int Ed, 2019, 58: 8405–8409

    Article  CAS  Google Scholar 

  20. Li D, Hu W, Wang J, Zhang Q, Cao XM, Ma X, Tian H. Chem Sci, 2018, 9: 5709–5715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He Z, Zhao W, Lam JWY, Peng Q, Ma H, Liang G, Shuai Z, Tang BZ. Nat Commun, 2017, 8: 416

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, Desiraju GR, Dikundwar AG, Dubey R, Duggirala N, Ghogale PP, Ghosh S, Goswami PK, Goud NR, Jetti RRKR, Karpinski P, Kaushik P, Kumar D, Kumar V, Moulton B, Mukherjee A, Mukherjee G, Myerson AS, Puri V, Ramanan A, Rajamannar T, Reddy CM, Rodriguez-Hornedo N, Rogers RD, Row TNG, Sanphui P, Shan N, Shete G, Singh A, Sun CC, Swift JA, Thaimattam R, Thakur TS, Kumar Thaper R, Thomas SP, Tothadi S, Vangala VR, Variankaval N, Vishweshwar P, Weyna DR, Zaworotko MJ. Cryst Growth Des, 2012, 12: 2147–2152

    Article  CAS  Google Scholar 

  23. Huang D, Wang C, Zou Y, Shen X, Zang Y, Shen H, Gao X, Yi Y, Xu W, Di CA, Zhu D. Angew Chem Int Ed, 2016, 55: 10672–10675

    Article  CAS  Google Scholar 

  24. Méndez H, Heimel G, Opitz A, Sauer K, Barkowski P, Oehzelt M, Soeda J, Okamoto T, Takeya J, Arlin JB, Balandier JY, Geerts Y, Koch N, Salzmann I. Angew Chem Int Ed, 2013, 52: 7751–7755

    Article  Google Scholar 

  25. Li ZZ, Liang F, Zhuo MP, Shi YL, Wang XD, Liao LS. Small, 2017, 13: 1604110

    Article  Google Scholar 

  26. Sun Y, Lei Y, Liao L, Hu W. Angew Chem Int Ed, 2017, 56: 10352–10356

    Article  CAS  Google Scholar 

  27. Yan D, Evans DG. Mater Horiz, 2014, 1: 46–57

    Article  CAS  Google Scholar 

  28. Zhu W, Zhang X, Hu W. Sci Bull, 2021, 66: 512–520

    Article  CAS  Google Scholar 

  29. Chen S, Yin H, Wu JJ, Lin H, Wang XD. Sci China Mater, 2020, 63: 1613–1630

    Article  CAS  Google Scholar 

  30. Dai D, Li Z, Yang J, Wang C, Wu JR, Wang Y, Zhang D, Yang YW. J Am Chem Soc, 2019, 141: 4756–4763

    Article  CAS  PubMed  Google Scholar 

  31. Li S, Yan D. Sci China Chem, 2018, 61: 215–221

    Article  CAS  Google Scholar 

  32. Duan Y, Ju C, Yang G, Fron E, Coutino-Gonzalez E, Semin S, Fan C, Balok RS, Cremers J, Tinnemans P, Feng Y, Li Y, Hofkens J, Rowan AE, Rasing T, Xu J. Adv Funct Mater, 2016, 26: 8968–8977

    Article  CAS  Google Scholar 

  33. Sun L, Wang Y, Yang F, Zhang X, Hu W. Adv Mater, 2019, 31: 1902328

    Article  Google Scholar 

  34. Arhangelskis M, Bučar DK, Bordignon S, Chierotti MR, Stratford SA, Voinovich D, Jones W, Hasa D. Chem Sci, 2021, 12: 3264–3269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bučar DK, Elliott JA, Eddleston MD, Cockcroft JK, Jones W. Angew Chem Int Ed, 2015, 54: 249–253

    Article  Google Scholar 

  36. Bai L, Bose P, Gao Q, Li Y, Ganguly R, Zhao Y. J Am Chem Soc, 2017, 139: 436–441

    Article  CAS  PubMed  Google Scholar 

  37. Zhuo MP, Wu JJ, Wang XD, Tao YC, Yuan Y, Liao LS. Nat Commun, 2019, 10: 3839

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hall AV, Yufit DS, Apperley DC, Senak L, Musa OM, Hood DK, Steed JW. Chem Sci, 2020, 11: 8025–8035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Zhu W, Du W, Liu X, Zhang X, Dong H, Hu W. Angew Chem Int Ed, 2018, 57: 3963–3967

    Article  CAS  Google Scholar 

  40. Wiscons RA, Goud NR, Damron JT, Matzger AJ. Angew Chem Int Ed, 2018, 57: 9044–9047

    Article  CAS  Google Scholar 

  41. Li S, Lu B, Fang X, Yan D. Angew Chem Int Ed, 2020, 59: 22623–22630

    Article  CAS  Google Scholar 

  42. Yan D, Yang H, Meng Q, Lin H, Wei M. Adv Funct Mater, 2014, 24: 587–594

    Article  CAS  Google Scholar 

  43. Xu B, Mu Y, Mao Z, Xie Z, Wu H, Zhang Y, Jin C, Chi Z, Liu S, Xu J, Wu YC, Lu PY, Lien A, Bryce MR. Chem Sci, 2016, 7: 2201–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan D, Delori A, Lloyd GO, Friščić T, Day GM, Jones W, Lu J, Wei M, Evans DG, Duan X. Angew Chem Int Ed, 2011, 50: 12483–12486

    Article  CAS  Google Scholar 

  45. Zhou B, Yan D. Adv Funct Mater, 2019, 29: 1807599

    Article  Google Scholar 

  46. Li S, Yan D. Adv Opt Mater, 2018, 6: 1800445

    Article  Google Scholar 

  47. Guo S, Liu R, Niu C, Weller D, Hao Y, Zhang M, Li A, Liang L, Wang X, Wang X, Yang B, Li ZA, Pan A. Adv Opt Mater, 2018, 6: 1800305

    Article  Google Scholar 

  48. Xu J, Zhuang X, Guo P, Zhang Q, Huang W, Wan Q, Hu W, Wang X, Zhu X, Fan C, Yang Z, Tong L, Duan X, Pan A. Nano Lett, 2012, 12: 5003–5007

    Article  CAS  PubMed  Google Scholar 

  49. Zhou B, Xiao G, Yan D. Adv Mater, 2021, 33: 2007571

    Article  CAS  Google Scholar 

  50. Yang X, Lin X, Zhao Y, Zhao YS, Yan D. Angew Chem Int Ed, 2017, 56: 7853–7857

    Article  CAS  Google Scholar 

  51. Zhuo MP, Tao YC, Wang XD, Wu Y, Chen S, Liao LS, Jiang L. Angew Chem Int Ed, 2018, 57: 11300–11304

    Article  CAS  Google Scholar 

  52. Gao R, Mei X, Yan D, Liang R, Wei M. Nat Commun, 2018, 9: 2798

    Article  PubMed  PubMed Central  Google Scholar 

  53. Huang YE, Wang XZ, Hu P, Qi XH, Huang XY, Kloc C, Wu X, Du KZ. Nanoscale, 2020, 12: 6227–6232

    Article  CAS  PubMed  Google Scholar 

  54. Jiang Y, Liu YY, Liu X, Lin H, Gao K, Lai WY, Huang W. Chem Soc Rev, 2020, 49: 5885–5944

    Article  CAS  Google Scholar 

  55. Jiang Y, Li KF, Gao K, Lin H, Tam HL, Liu YY, Shu Y, Wong KL, Lai WY, Cheah KW, Huang W. Angew Chem Int Ed, 2021, 60: 10007–10015

    Article  CAS  Google Scholar 

  56. Bolla G, Liao Q, Amirjalayer S, Tu Z, Lv S, Liu J, Zhang S, Zhen Y, Yi Y, Liu X, Fu H, Fuchs H, Dong H, Wang Z, Hu W. Angew Chem Int Ed, 2021, 60: 281–289

    Article  CAS  Google Scholar 

  57. Sun CL, Li J, Song QW, Ma Y, Zhang ZQ, De JB, Liao Q, Fu H, Yao J, Zhang HL. Angew Chem Int Ed, 2020, 59: 11080–11086

    Article  CAS  Google Scholar 

  58. Liu D, De J, Gao H, Ma S, Ou Q, Li S, Qin Z, Dong H, Liao Q, Xu B, Peng Q, Shuai Z, Tian W, Fu H, Zhang X, Zhen Y, Hu W. J Am Chem Soc, 2020, 142: 6332–6339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21771021, 21822501, 22061130206), the Beijing Municipal Natural Science Fundation (JQ20003), the Newton Advanced Fellowship award (NAFR1201285), the Fok Ying-Tong Education Foundation (171008), the Measurements Fund of Beijing Normal University, and the State Key Laboratory of Heavy Oil Processing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruibin Liu or Dongpeng Yan.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors

Supporting Information

11426_2021_1130_MOESM1_ESM.pdf

Three-primary-color molecular cocrystals showing white-light luminescence, tunable optical waveguide and ultrahigh polarized emission

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Hao, Y., Guo, S. et al. Three-primary-color molecular cocrystals showing white-light luminescence, tunable optical waveguide and ultrahigh polarized emission. Sci. China Chem. 65, 408–417 (2022). https://doi.org/10.1007/s11426-021-1130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1130-9

Keywords

Navigation