Skip to main content
Log in

Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si-H activation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hydrosilylation is one of the most important reactions in synthetic chemistry and ranks as a fundamental method to access organosilicon compounds in industrial and academic processes. However, the enantioselective construction of chiral-at-silicon compounds via catalytic asymmetric hydrosilylation remained limited and difficult. Here we report a highly enantioselective hydrosilylation of ynones, a type of carbonyl-activated alkynes, using a palladium catalyst with a chiral binaphthyl phosphoramidite ligand. The stereospecific hydrosilylation of ynones affords a series of silicon-stereogenic silylenones with up to 94% yield, >20:1 regioselectivity and 98:2 enantioselectivity. The density functional theory (DFT) calculations were conducted to elucidate the reaction mechanism and origin of high degree of stereoselectivity, in which the powerful potential of aromatic interaction in this reaction is highlighted by the multiple C-H-π interaction and aromatic cavity-oriented enantioselectivity-determining step during desymmetric functionalization of Si-H bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park S. Chin J Chem, 2019, 37: 1057–1071

    Article  Google Scholar 

  2. Obligacion JV, Chirik PJ. Nat Rev Chem, 2018, 2: 15–34

    Article  Google Scholar 

  3. Cheng C, Hartwig JF. Chem Rev, 2015, 115: 8946–8975

    Article  Google Scholar 

  4. Xu Z, Huang WS, Zhang J, Xu LW. Synthesis, 2015, 47: 3645–3668

    Article  Google Scholar 

  5. Zhang H, Li L, Shen F, Cai T, Shen R. Chin J Org Chem, 2020, 40: 873–885

    Article  Google Scholar 

  6. Zaranek M, Pawluc P. ACS Catal, 2018, 8: 9865–9876

    Article  Google Scholar 

  7. Wen H, Liu G, Huang Z. Coord Chem Rev, 2019, 386: 138–153

    Article  Google Scholar 

  8. Hu MY, He Q, Fan SJ, Wang ZC, Liu LY, Mu YJ, Peng Q, Zhu SF. Nat Commun, 2018, 9: 221

    Article  Google Scholar 

  9. Tondreau AM, Atienza CCH, Weller KJ, Nye SA, Lewis KM, Delis JGP, Chirik PJ. Science, 2012, 335: 567–570

    Article  Google Scholar 

  10. Schubert U. Adv Organomet Chem, 1990, 30: 151–187

    Article  Google Scholar 

  11. Sieh D, Burger P. J Am Chem Soc, 2013, 135: 3971–3982

    Article  Google Scholar 

  12. Stahl T, Hrobárik P, Königs CDF, Ohki Y, Tatsumi K, Kemper S, Kaupp M, Klare HFT, Oestreich M. Chem Sci, 2015, 6: 4324–4334

    Article  Google Scholar 

  13. Klare HFT, Oestreich M, Ito J, Nishiyama H, Ohki Y, Tatsumi K. J Am Chem Soc, 2011, 133: 3312–3315

    Article  Google Scholar 

  14. Harrod JF, Chalk AJ. J Am Chem Soc, 1966, 88: 3491–3497

    Article  Google Scholar 

  15. Roy AK, Taylor RB. J Am Chem Soc, 2002, 124: 9510–9524

    Article  Google Scholar 

  16. Chung LW, Wu YD, Trost BM, Ball ZT. J Am Chem Soc, 2003, 125: 11578–11582

    Article  Google Scholar 

  17. Guo J, Shen X, Lu Z. Angew Chem Int Ed, 2017, 56: 615–618

    Article  Google Scholar 

  18. Wen H, Wang K, Zhang Y, Liu G, Huang Z. ACS Catal, 2019, 9: 1612–1618

    Article  Google Scholar 

  19. Gu XW, Sun YL, Xie JL, Wang XB, Xu Z, Yin GW, Li L, Yang KF, Xu LW. Nat Commun, 2020, 11: 2904

    Article  Google Scholar 

  20. Chen C, Wang H, Sun Y, Cui J, Xie J, Shi Y, Yu S, Hong X, Lu Z. iScience, 2020, 23: 100985

    Article  Google Scholar 

  21. Zhao ZY, Nie YX, Tang RH, Yin GW, Cao J, Xu Z, Cui YM, Zheng ZJ, Xu LW. ACS Catal, 2019, 9: 9110–9116

    Article  Google Scholar 

  22. Oestreich M. Synlett, 2007, 2007: 1629–1643

    Article  Google Scholar 

  23. Xu LW, Li L, Lai GQ, Jiang JX. Chem Soc Rev, 2011, 40: 1777–1790

    Article  Google Scholar 

  24. Weickgenannt A, Mewald M, Oestreich M. Org Biomol Chem, 2010, 8: 1497–1504

    Article  Google Scholar 

  25. Zhan G, Teng HL, Luo Y, Lou SJ, Nishiura M, Hou Z. Angew Chem Int Ed, 2018, 57: 12342–12346

    Article  Google Scholar 

  26. Mu D, Yuan W, Chen S, Wang N, Yang B, You L, Zu B, Yu P, He C. J Am Chem Soc, 2020, 142: 13459–13468

    Article  Google Scholar 

  27. Tang RH, Xu Z, Nie YX, Xiao XQ, Yang KF, Xie JL, Guo B, Yin GW, Yang XM, Xu LW. iScience, 2020, 23: 101268

    Article  Google Scholar 

  28. Jagannathan JR, Fettinger JC, Shaw JT, Franz AK. J Am Chem Soc, 2020, 142: 11674–11679

    Article  Google Scholar 

  29. Kurihara Y, Nishikawa M, Yamanoi Y, Nishihara H. Chem Commun, 2012, 48: 11564–11566

    Article  Google Scholar 

  30. Zhang G, Li Y, Wang Y, Zhang Q, Xiong T, Zhang Q. Angew Chem Int Ed, 2020, 59: 11927–11931

    Article  Google Scholar 

  31. Wang X, Zheng Z, Xie J, Gu X, Mu Q, Yin G, Ye F, Xu Z, Xu L. Angew Chem Int Ed, 2020, 59: 790–797

    Article  Google Scholar 

  32. Chen H, Chen Y, Tang X, Liu S, Wang R, Hu T, Gao L, Song Z. Angew Chem Int Ed, 2019, 58: 4695–4699

    Article  Google Scholar 

  33. Zhang QW, An K, Liu LC, Guo S, Jiang C, Guo H, He W. Angew Chem Int Ed, 2016, 55: 6319–6323

    Article  Google Scholar 

  34. Igawa K, Yoshihiro D, Ichikawa N, Kokan N, Tomooka K. Angew Chem Int Ed, 2012, 51: 12745–12748

    Article  Google Scholar 

  35. Wen H, Wan X, Huang Z. Angew Chem Int Ed, 2018, 57: 6319–6323

    Article  Google Scholar 

  36. Guo J, Wang H, Xing S, Hong X, Lu Z. Chem, 2019, 5: 881–895

    Article  Google Scholar 

  37. Zheng N, Song W, Zhang T, Li M, Zheng Y, Chen L. J Org Chem, 2018, 83: 6210–6216

    Article  Google Scholar 

  38. Trost BM, Ball ZT. J Am Chem Soc, 2004, 126: 13942–13944

    Article  Google Scholar 

  39. Rooke DA, Menard ZA, Ferreira EM. Tetrahedron, 2014, 70: 4232–4244

    Article  Google Scholar 

  40. Sumida Y, Kato T, Yoshida S, Hosoya T. Org Lett, 2012, 14: 1552–1555

    Article  Google Scholar 

  41. Crawford J, Sigman M. Synthesis, 2019, 51: 1021–1036

    Article  Google Scholar 

  42. Grimme S. Angew Chem Int Ed, 2008, 47: 3430–3434

    Article  Google Scholar 

  43. Fatima M, Steber AL, Poblotzki A, Pérez C, Zinn S, Schnell M. Angew Chem Int Ed, 2019, 58: 3108–3113

    Article  Google Scholar 

  44. Pescitelli G, Di Bari L, Berova N. Chem Soc Rev, 2011, 40: 4603–4625

    Article  Google Scholar 

  45. Satyanarayana T, Abraham S, Kagan H. Angew Chem Int Ed, 2009, 48: 456–494

    Article  Google Scholar 

  46. LaPointe AM, Rix FC, Brookhart M. J Am Chem Soc, 1997, 119: 906–917

    Article  Google Scholar 

  47. Sakaki S, Sumimoto M, Fukuhara M, Sugimoto M, Fujimoto H, Matsuzaki S. Organometallics, 2002, 21: 3788–3802

    Article  Google Scholar 

  48. Krenske EH, Houk KN. Acc Chem Res, 2013, 46: 979–989

    Article  Google Scholar 

  49. Liu S, Zhang T, Zhu L, Liu F, Bai R, Lan Y. Org Lett, 2020, 22: 2124–2128

    Article  Google Scholar 

  50. Yang JJ, Xu Z, Nie YX, Lu SQ, Zhang J, Xu LW. J Org Chem, 2020, 85: 14360–14368

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21773051, 22072035, 21703051, 21801056, 21901056), Zhejiang Provincial Natural Science Foundation of China (LZ18B020001, LY18B020013, LQ19B040001). The authors thank L. Li, K.Z. Jiang and X.Q. Xiao for their assistance on the MS and X-ray analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Wen Xu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2020_9939_MOESM1_ESM.pdf

Palladium-Catalyzed Hydrosilylation of Ynones to Access Silicon-Stereogenic Silylenones by Stereospecific Aromatic Interaction-assisted Si-H Activation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, JL., Xu, Z., Zhou, HQ. et al. Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si-H activation. Sci. China Chem. 64, 761–769 (2021). https://doi.org/10.1007/s11426-020-9939-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9939-1

Keywords

Navigation