Skip to main content
Log in

Intrinsic emission and tunable phosphorescence of perfluorosulfonate ionomers with evolved ionic clusters

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Intrinsic emission from unorthodox luminogens without traditional conjugated building blocks is drawing increasing attention. However, the emission mechanism is still controversial. Herein, we demonstrate the intriguing emission from perfluorosulfonate ionomers (PFSIs), which can be explained by the clustering triggered emission (CTE) mechanism. Despite being free of any conventional chromophores, PFSIs exhibit bright emission and multi-color phosphorescence (77 K) in concentrated solutions, powders and membranes with obvious aggregation-induced emission (AIE) characteristics. Clustered sulfonic acids are responsible for the light emission, and their connection and evolution are deeply explored via X-ray diffraction (XRD) and small angel X-ray scattering (SAXS), in which the electron overlap determined by the clustered status results in the extended conjugation and simultaneously rigidified conformations. These results demonstrate that it is feasible to use fluorescence analysis to explore the ionic cluster structure and evolution of PFSI, and it can be applied in the pure organic luminescent field as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding D, Li K, Liu B, Tang BZ. Acc Chem Res, 2013, 46: 2441–2453

    Article  CAS  PubMed  Google Scholar 

  2. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238

    Article  CAS  PubMed  Google Scholar 

  3. Yuan WZ, Lu P, Chen S, Lam JWY, Wang Z, Liu Y, Kwok HS, Ma Y, Tang BZ. Adv Mater, 2010, 22: 2159–2163

    Article  CAS  PubMed  Google Scholar 

  4. Lou X, Ou D, Li Q, Li Z. Chem Commun, 2012, 48: 8462–8477

    Article  CAS  Google Scholar 

  5. Zhang J, Zou Q, Tian H. Adv Mater, 2013, 25: 378–399

    Article  CAS  PubMed  Google Scholar 

  6. Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740–1741

    Google Scholar 

  7. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ. Adv Mater, 2014, 26: 5429–5479

    Article  CAS  PubMed  Google Scholar 

  8. Birks JB. Photophysics of Aromatic Molecules. London: Wiley, 1970

    Google Scholar 

  9. Lakowicz JR. Principles of Fluorescence Spectroscopy. New York: Springer Science & Business Media, 2006

    Book  Google Scholar 

  10. Yuan WZ, Zhang Y. J Polym Sci Part A-Polym Chem, 2017, 55: 560–574

    Article  CAS  Google Scholar 

  11. Feng Y, Bai T, Yan H, Ding F, Bai L, Feng W. Macromolecules, 2019, 52: 3075–3082

    Article  CAS  Google Scholar 

  12. Song G, Lin Y, Zhu Z, Zheng H, Qiao J, He C, Wang H. Macromol Rapid Commun, 2015, 36: 278–285

    Article  CAS  PubMed  Google Scholar 

  13. Fang M, Yang J, Xiang X, Xie Y, Dong Y, Peng Q, Li Q, Li Z. Mater Chem Front, 2018, 2: 2124–2129

    Article  CAS  Google Scholar 

  14. Lee WI, Bae Y, Bard AJ. J Am Chem Soc, 2004, 126: 8358–8359

    Article  CAS  PubMed  Google Scholar 

  15. Wang D, Imae T. J Am Chem Soc, 2004, 126: 13204–13205

    Article  CAS  PubMed  Google Scholar 

  16. Chu CC, Imae T. Macromol Rapid Commun, 2009, 30: 89–93

    Article  CAS  PubMed  Google Scholar 

  17. Lu H, Feng L, Li S, Zhang J, Lu H, Feng S. Macromolecules, 2015, 48: 476–482

    Article  CAS  Google Scholar 

  18. Lin SY, Wu TH, Jao YC, Liu CP, Lin HY, Lo LW, Yang CS. Chem Eur J, 2011, 17: 7158–7161

    Article  CAS  PubMed  Google Scholar 

  19. Cao L, Yang W, Wang C, Fu S. J Macromol Sci Part A, 2007, 44: 417–424

    Article  CAS  Google Scholar 

  20. Yan J, Zheng B, Pan D, Yang R, Xu Y, Wang L, Yang M. Polym Chem, 2015, 6: 6133–6139

    Article  CAS  Google Scholar 

  21. Yan JJ, Wang ZK, Lin XS, Hong CY, Liang HJ, Pan CY, You YZ. Adv Mater, 2012, 24: 5617–5624

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Wu X, Zhao Z, Qin A, Hu R, Tang BZ. Macromolecules, 2015, 48: 7747–7754

    Article  CAS  Google Scholar 

  23. Zhao Z, Chen X, Wang Q, Yang T, Zhang Y, Yuan WZ. Polym Chem, 2019, 10: 3639–3646

    Article  CAS  Google Scholar 

  24. Wu, Liu Y, He Y, Goh SH. Macromolecules, 2005, 38: 9906–9909

    Article  CAS  Google Scholar 

  25. Sun M, Hong CY, Pan CY. J Am Chem Soc, 2012, 134: 20581–20584

    Article  CAS  PubMed  Google Scholar 

  26. Lin Y, Gao JW, Liu HW, Li YS. Macromolecules, 2009, 42: 3237–3246

    Article  CAS  Google Scholar 

  27. Restani RB, Morgado PI, Ribeiro MP, Correia IJ, Aguiar-Ricardo A, Bonifácio VDB. Angew Chem Int Ed, 2012, 51: 5162–5165

    Article  CAS  Google Scholar 

  28. Pastor-Pérez L, Chen Y, Shen Z, Lahoz A, Stiriba SE. Macromol Rapid Commun, 2007, 28: 1404–1409

    Article  CAS  Google Scholar 

  29. Tamano K, Imae T. J Nanosci Nanotech, 2008, 8: 4329–4334

    Article  CAS  Google Scholar 

  30. Wang D, Imae T, Miki M. J Colloid Interface Sci, 2007, 306: 222–227

    Article  CAS  PubMed  Google Scholar 

  31. Gong YY, Tan YQ, Mei J, Zhang YR, Yuan WZ, Zhang YM, Sun JZ, Tang BZ. Sci China Chem, 2013, 56: 1178–1182

    Article  CAS  Google Scholar 

  32. Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang BZ, Zhang Y, Yuan WZ. Biomacromolecules, 2018, 19: 2014–2022

    Article  CAS  PubMed  Google Scholar 

  33. Wang Q, Dou X, Chen X, Zhao Z, Wang S, Wang Y, Sui K, Tan Y, Gong Y, Zhang Y, Yuan WZ. Angew Chem Int Ed, 2019, 58: 12667–12673

    Article  CAS  Google Scholar 

  34. Pucci A, Rausa R, Ciardelli F. Macromol Chem Phys, 2008, 209: 900–906

    Article  CAS  Google Scholar 

  35. Zhao E, Lam JWY, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang BZ. Macromolecules, 2014, 48: 64–71

    Article  CAS  Google Scholar 

  36. Liu C, Cui Q, Wang J, Liu Y, Chen J. Soft Matter, 2016, 12: 4295–4299

    Article  CAS  PubMed  Google Scholar 

  37. Xue Y, Qiu X, Wu Y, Qian Y, Zhou M, Deng Y, Li Y. Polym Chem, 2016, 7: 3502–3508

    Article  CAS  Google Scholar 

  38. Chen X, Luo W, Ma H, Peng Q, Yuan WZ, Zhang Y. Sci China Chem, 2018, 61: 351–359

    Article  CAS  Google Scholar 

  39. Zhou Q, Wang Z, Dou X, Wang Y, Liu S, Zhang Y, Yuan WZ. Mater Chem Front, 2019, 3: 257–264

    Article  CAS  Google Scholar 

  40. Tomalia DA, Klajnert-Maculewicz B, Johnson KAM, Brinkman HF, Janaszewska A, Hedstrand DM. Prog Polym Sci, 2019, 90: 35–117

    Article  CAS  Google Scholar 

  41. Zhang H, Zhao Z, McGonigal PR, Ye R, Liu S, Lam JWY, Kwok RTK, Yuan WZ, Xie J, Rogach AL, Tang BZ. Mater Today, 2020, 32: 275–292

    Article  CAS  Google Scholar 

  42. Wang R, Yuan W, Zhu X. Chin J Polym Sci, 2015, 33: 680–687

    Article  CAS  Google Scholar 

  43. Ji Y, Qian Y. RSC Adv, 2014, 4: 58788–58794

    Article  CAS  Google Scholar 

  44. Liu SG, Li N, Ling Y, Kang BH, Geng S, Li NB, Luo HQ. Langmuir, 2016, 32: 1881–1889

    Article  CAS  PubMed  Google Scholar 

  45. Unless specified PFSI discussed herein refers to the H-form

  46. Mauritz KA, Moore RB. Chem Rev, 2004, 104: 4535–4586

    Article  CAS  PubMed  Google Scholar 

  47. Kusoglu A, Weber AZ. Chem Rev, 2017, 117: 987–1104

    Article  CAS  PubMed  Google Scholar 

  48. Diat O, Gebel G. Nat Mater, 2008, 7: 13–14

    Article  CAS  PubMed  Google Scholar 

  49. Spry DB, Goun A, Glusac K, Moilanen DE, Fayer MD. J Am Chem Soc, 2007, 129: 8122–8130

    Article  CAS  PubMed  Google Scholar 

  50. Grava WM. Okada T. Kawano Y. Electrochemistry, 2006, 74: 467–473

    Article  CAS  Google Scholar 

  51. Gebel G. Polymer, 2000, 41: 5829–5838

    Article  CAS  Google Scholar 

  52. Deng ZD, Mauritz KA. Macromolecules, 1992, 25: 2739–2745

    Article  Google Scholar 

  53. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  PubMed  Google Scholar 

  54. Melhuish WH. J Phys Chem, 1961, 65: 229–235

    Article  CAS  Google Scholar 

  55. Kawamura Y, Brooks J, Brown JJ, Sasabe H, Adachi C. Phys Rev Lett, 2006, 96: 017404

    Article  CAS  PubMed  Google Scholar 

  56. Falk M. Can J Chem, 1980, 58: 1495–1501

    Article  CAS  Google Scholar 

  57. Yeager HL, Steck A. J Electrochem Soc, 1981, 128: 1880–1884

    Article  CAS  Google Scholar 

  58. Haubold HG, Vad T, Jungbluth H, Hiller P. Electrochim Acta, 2001, 46: 1559–1563

    Article  CAS  Google Scholar 

  59. Bressler I, Pauw BR, Thünemann AF. J Appl Crystlogr, 2015, 48: 962–969

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Petrochina Petrochemical Research Institute (LH-17-02-07-05) and Open Foundation from State Key Laboratory of Fluorinated Functional Membrane Material.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Supeng Pei or Yongming Zhang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Cui, J., Yang, T. et al. Intrinsic emission and tunable phosphorescence of perfluorosulfonate ionomers with evolved ionic clusters. Sci. China Chem. 63, 833–840 (2020). https://doi.org/10.1007/s11426-019-9704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9704-y

Keywords

Navigation