Skip to main content
Log in

Room temperature phosphorescence from natural products: Crystallization matters

  • Communications
  • Special Topic Aggregated-Induced Emission
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Efficient room temperature phosphorescence is observed in natural compounds and polymers such as starch, cellulose, bovine serum albumin (BSA), and some other carbohydrates. Whereas being practically nonluminescent in solutions and TLC plates, they emit bright phosphorescence in the crystalline states with lifetime up to microseconds, exhibiting crystallization-induced phosphorescence (CIP) characteristics. The CIP of these natural products without any conventional chromophores offers a new platform for the exploration of conceptually novel luminogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hu S, Zhou J, Zhou G, Li D, Wu H, Su S, Wong WY, Yang W, Peng J, Cao Y. Highly efficient pure white polymer light-emitting devices based on poly(N-vinylcarbazole) doped with blue and red phosphorescent dyes. Sci China Chem, 2011, 54:671–677

    Article  CAS  Google Scholar 

  2. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395:151–154

    Article  CAS  Google Scholar 

  3. Brédas JL, Norton JE, Cornil J, Coropceanu V. Molecular understanding of organic solar cells: The challenges. Acc Chem Res, 2009, 42:1691–1699

    Article  Google Scholar 

  4. Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F. Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Appl Phys Lett, 1993, 62:585–587

    Article  CAS  Google Scholar 

  5. You Y, Han Y, Lee YM, Park SY, Nam W, Lippard SJ. Phosphorescent sensor for robust quantification of copper(II) ion. J Am Chem Soc, 2011, 133:11488–11491

    Article  CAS  Google Scholar 

  6. Xu W, Liu. S, Zhao Q, Ma T, Sun S, Zhao X, Huang W. A nearinfrared phosphorescent probe for F based on a cationic iridium(III) complex with triarylboron moieties. Sci China Chem, 2011, 54:1750–1758

    Article  CAS  Google Scholar 

  7. Liu S, Qiao W, Cao G, Chen Y, Ma Y, Huang Y, Liu X, Xu W, Zhao Q, Huang W. Smart poly(N-isopropylacrylamide) containing iridium(III) complexes as water-soluble phosphorescent probe for sensing and bioimaging of homocysteine and cysteine. Macromol Rapid Commun, 2013, 34:81–86

    Article  CAS  Google Scholar 

  8. Zhao Q, Huang C, Li F. Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev, 2011, 40:2508–2524

    Article  CAS  Google Scholar 

  9. Asafu-Adjaye EB, Su SY. Mixture analysis using solid substrate room temperature luminescence. Anal Chem, 1986, 58:539–543

    Article  CAS  Google Scholar 

  10. Sanz-Medel A, Martinez Garcia PL, Diaz Garcia ME. Micelle-stabilized room-temperature liquid phosphorimetry of metal chelates and its application to niobium determination. Anal Chem, 1987, 59:774–778

    Article  CAS  Google Scholar 

  11. Scypinski S, Love LJC. Cyclodextrin-induced room-temperature phosphorescence of nitrogen heterocycles and bridged biphenyls. Anal Chem, 1984, 56:331–336

    Article  CAS  Google Scholar 

  12. Yuan WZ, Shen XY, Zhao H, Lam JWY, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun JZ, Ma Y, Tang BZ. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J Phys Chem C, 2010, 114:6090–6099

    Article  CAS  Google Scholar 

  13. Bolton O, Lee K, Kim HJ, Lin KY, Kim J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat Chem, 2011, 3:205–210

    CAS  Google Scholar 

  14. Gao HY, Zhao XR, Wang H, Pang X, Jin WJ. Phosphorescent cocrystals assembled by 1,4-diiodotetrafluorobenzene and fluorene and its heterocyclic analogues based on C-I...π halogen bonding. Crys Growth Des, 2012, 12:4377–4387

    Article  CAS  Google Scholar 

  15. Yong G, She W, Zhang Y. Room-temperature phosphorescence in solution and in solid state from purely organic dyes. Dyes Pigm, 2012, 95:161–167

    Article  CAS  Google Scholar 

  16. Luo X, Li J, Li C, Heng L, Dong YQ, Liu Z, Bo Z, Tang BZ. Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli materials. Adv Mater, 2011, 23:3261–3265

    Article  CAS  Google Scholar 

  17. Yuan WZ, Tan Y, Gong Y, Lu P, Lam JWY, Shen XY, Feng C, Sung HHY, Lu Y, Williams ID, Sun JZ, Zhang Y, Tang BZ. Synergy between twisted conformation and effective intermolecular interactions: strategy for efficient mechanochromic luminogens with high contrast. Adv Mater, 2013, 25:2837–2843

    Article  CAS  Google Scholar 

  18. Cellulose was dissolved in NaOH (7 wt %)/urea (12 wt %) aqueous solution at −12 °C, see: Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H. Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun, 2004, 25: 1558–1562

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WangZhang Yuan, YongMing Zhang or Ben Zhong Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Y., Tan, Y., Mei, J. et al. Room temperature phosphorescence from natural products: Crystallization matters. Sci. China Chem. 56, 1178–1182 (2013). https://doi.org/10.1007/s11426-013-4923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4923-8

Keywords

Navigation