Skip to main content
Log in

Aromatic inorganic acid radical

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Stable radicals are challenging to prepare due to their intrinsic high reactivity. Herein, three trisphenolamine radicals were readily synthesized and exhibited unexpected thermal/electrochemical stability and semiconductor property. These three nitroxide radicals could be considered as a class of aromatized nitro groups or HNO3 derivatives. The closed-shell nitro-like and open-shell nitroxide resonance structure contribute to their outstanding stability. Furthermore, the tunable ground states, extremely low band gap and p-type charge transport properties were systematically investigated. More importantly, the work presents the concept of aromatic inorganic acid radical (AIAR) and aggregation-induced radical (AIR) mechanism to understand the intrinsic structure-property relationship of these radicals. In addition, we provide a novel strategy for the design of stable and low bandgap radicals for organic electronics, magnetics, spintronics, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joo Y, Agarkar V, Sung SH, Savoie BM, Boudouris BW. Science, 2018, 359: 1391–1395

    Article  CAS  PubMed  Google Scholar 

  2. Kamada K, Ohta K, Kubo T, Shimizu A, Morita Y, Nakasuji K, Kishi R, Ohta S, Furukawa S, Takahashi H, Nakano M. Angew Chem Int Ed, 2007, 46: 3544–3546

    Article  CAS  Google Scholar 

  3. Fujita W, Awaga K. Science, 1999, 286: 261–262

    Article  CAS  PubMed  Google Scholar 

  4. Ai X, Chen Y, Feng Y, Li F. Angew Chem Int Ed, 2018, 57: 2869–2873

    Article  CAS  Google Scholar 

  5. Son YW, Cohen ML, Louie SG. Nature, 2006, 444: 347–349

    Article  CAS  PubMed  Google Scholar 

  6. Yuan D, Guo Y, Zeng Y, Fan Q, Wang J, Yi Y, Zhu X. Angew Chem Int Ed, 2019, 58: 4958–4962

    Article  CAS  Google Scholar 

  7. Morita Y, Nishida S, Murata T, Moriguchi M, Ueda A, Satoh M, Arifuku K, Sato K, Takui T. Nat Mater, 2011, 10: 947–951

    Article  CAS  PubMed  Google Scholar 

  8. Abe M, Ye J, Mishima M. Chem Soc Rev, 2012, 41: 3808–3820

    Article  CAS  PubMed  Google Scholar 

  9. Thiele J, Balhorn H. Ber Dtsch Chem Ges, 1904, 37: 1463–1470

    Article  Google Scholar 

  10. Tschitschibabin AE. Ber Dtsch Chem Ges, 1907, 40: 1810–1819

    Article  CAS  Google Scholar 

  11. Sun Z, Ye Q, Chi C, Wu J. Chem Soc Rev, 2012, 41: 7857–7889

    Article  CAS  PubMed  Google Scholar 

  12. Ito A, Urabe M, Tanaka K. Angew Chem Int Ed, 2003, 42: 921–924

    Article  CAS  Google Scholar 

  13. Isogai A, Saito T, Fukuzumi H. Nanoscale, 2011, 3: 71–85

    Article  CAS  PubMed  Google Scholar 

  14. Abe M. Chem Rev, 2013, 113: 7011–7088

    Article  CAS  PubMed  Google Scholar 

  15. Xue Q, Liu M, Li Z, Yan L, Hu Z, Zhou J, Li W, Jiang XF, Xu B, Huang F, Li Y, Yip HL, Cao Y. Adv Funct Mater, 2018, 28: 1707444

    Article  CAS  Google Scholar 

  16. Hu X, Chen H, Zhao L, Miao M, Han J, Wang J, Guo J, Hu Y, Zheng Y. Chem Commun, 2019, 55: 7812–7815

    Article  CAS  Google Scholar 

  17. Nakagaki T, Sakai T, Mizuta T, Fujiwara Y, Abe M. Chem Eur J, 2013, 19: 10395–10404

    Article  CAS  PubMed  Google Scholar 

  18. Chase DT, Fix AG, Kang SJ, Rose BD, Weber CD, Zhong Y, Zakharov LN, Lonergan MC, Nuckolls C, Haley MM. J Am Chem Soc, 2012, 134: 10349–10352

    Article  CAS  PubMed  Google Scholar 

  19. Shimizu A, Kubo T, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Hirao Y, Matsumoto K, Kurata H, Morita Y, Nakasuji K. J Am Chem Soc, 2010, 132: 14421–14428

    Article  CAS  PubMed  Google Scholar 

  20. Kubo T, Sakamoto M, Akabane M, Fujiwara Y, Yamamoto K, Akita M, Inoue K, Takui T, Nakasuji K. Angew Chem Int Ed, 2004, 43: 6474–6479

    Article  CAS  Google Scholar 

  21. Li Y, Heng WK, Lee BS, Aratani N, Zafra JL, Bao N, Lee R, Sung YM, Sun Z, Huang KW, Webster RD, López Navarrete JT, Kim D, Osuka A, Casado J, Ding J, Wu J. J Am Chem Soc, 2012, 134: 14913–14922

    Article  CAS  PubMed  Google Scholar 

  22. Hoover JM, Ryland BL, Stahl SS. J Am Chem Soc, 2013, 135: 2357–2367

    Article  CAS  PubMed  Google Scholar 

  23. Habibi Y, Lucia LA, Rojas OJ. Chem Rev, 2010, 110: 3479–3500

    Article  CAS  PubMed  Google Scholar 

  24. Benoit D, Chaplinski V, Braslau R, Hawker CJ. J Am Chem Soc, 1999, 121: 3904–3920

    Article  CAS  Google Scholar 

  25. Quinkert G, Wiersdorff WW, Finke M, Opitz K. Tetrahedron Lett, 1966, 7: 2193–2200

    Article  Google Scholar 

  26. Kolc J, Michl J. J Am Chem Soc, 1973, 95: 7391–7401

    Article  CAS  Google Scholar 

  27. McMasters DR, Wirz J. J Am Chem Soc, 2001, 123: 238–246

    Article  CAS  PubMed  Google Scholar 

  28. McMasters DR, Wirz J, Snyder GJ. J Am Chem Soc, 1997, 119: 8568–8569

    Article  CAS  Google Scholar 

  29. Amorati R, Pedulli GF, Pratt DA, Valgimigli L. Chem Commun, 2010, 46: 5139–5141

    Article  CAS  Google Scholar 

  30. Altwicker ER. Chem Rev, 1967, 67: 475–531

    Article  CAS  Google Scholar 

  31. Coppinger GM. J Am Chem Soc, 1957, 79: 501–502

    Article  CAS  Google Scholar 

  32. Yang NC, Castro AJ. J Am Chem Soc, 1960, 82: 6208

    Article  CAS  Google Scholar 

  33. Sakamaki D, Yano S, Kobashi T, Seki S, Kurahashi T, Matsubara S, Ito A, Tanaka K. Angew Chem Int Ed, 2015, 127: 8385–8388

    Article  Google Scholar 

  34. Shimizu D, Fujimoto K, Osuka A. Angew Chem Int Ed, 2018, 57: 9434–9438

    Article  CAS  Google Scholar 

  35. Waked AE, Ostadsharif Memar R, Stephan DW. Angew Chem Int Ed, 2018, 57: 11934–11938

    Article  CAS  Google Scholar 

  36. Wang J, Kim G, Sandoval-Salinas ME, Phan H, Gopalakrishna TY, Lu X, Casanova D, Kim D, Wu J. Chem Sci, 2018, 9: 3395–3400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Huang KW, Sun Z, Webster RD, Zeng Z, Zeng W, Chi C, Furukawa K, Wu J. Chem Sci, 2014, 5: 1908–1914

    Article  CAS  Google Scholar 

  38. Yanai T, Tew DP, Handy NC. Chem Phys Lett, 2004, 393: 51–57

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  40. Mihailetchi VD, van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM. Adv Funct Mater, 2003, 13: 43–46

    Article  CAS  Google Scholar 

  41. Zhang Y, de Boer B, Blom PWM. Adv Funct Mater, 2009, 19: 1901–1905

    Article  CAS  Google Scholar 

  42. Crystallographic data for TPA-OH2: C18H15NO2, Mw=277.31; monoclinic; space group I2/a; a=17.7458(4) Å, b=7.60935(14) Å, c=21.3425(5) Å, α=90°, β=100.335(2)°, γ=90°; V=2835.21(10) Å3; Z=8; ρcalc=1.299g/cm3; R1=0.0377 (I>2σ(I)), wR2=0.1037 (all data). CCDC No. 1908983. X-ray-quality crystal was obtained by slow evaporation of the solution in dichloromethane/petroleum ether.

  43. Wang Y, Qiu S, Xie S, Zhou L, Hong Y, Chang J, Wu J, Zeng Z. J Am Chem Soc, 2019, 141: 2169–2176

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Li L, Wu Y, Li Y. J Phys Chem C, 2017, 121: 8579–8588

    Article  CAS  Google Scholar 

  45. Su Y, Wang X, Wang L, Zhang Z, Wang X, Song Y, Power PP. Chem Sci, 2016, 7: 6514–6518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pan X, Chen X, Li T, Li Y, Wang X. J Am Chem Soc, 2013, 135: 3414–3417

    Article  CAS  PubMed  Google Scholar 

  47. Tan G, Wang X. Acc Chem Res, 2017, 50: 1997–2006

    Article  CAS  PubMed  Google Scholar 

  48. Xue Y, Wu Y, Li Y. J Power Sources, 2017, 344: 160–169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Pearl River S&T Nova Program of Guangzhou (201710010194), the National Natural Science Foundation of China (61574061, 21520102006, 21634004, 51521002, 91633301), and the Foundation of Guangzhou Science and Technology Project (201707020019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Li or Fei Huang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhu, W., Zeng, M. et al. Aromatic inorganic acid radical. Sci. China Chem. 62, 1656–1665 (2019). https://doi.org/10.1007/s11426-019-9641-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9641-2

Keywords

Navigation