Skip to main content
Log in

Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 04 June 2019

This article has been updated

Abstract

Ozone was used to oxidize graphene oxides (GO) to generate ozonated graphene oxides (OGO) with higher oxygen-containing functional groups. The as-prepared OGO was characterized by Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Based on the results of potentiometric acid-base titrations, the total carboxylic acid concentration on OGO surface was calculated to be 3.92 mmol/g, which was much higher than that on GO surface. The results of adsorption experiments indicated that the adsorption capacities of OGO for Sr(II) and U(VI) removal were improved significantly after ozonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 04 June 2019

    We regret that our article ���Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions ��� (Sci China Chem, 2016, 59: 869���877) contained errors. The corrections in an erratum do not change or affect the result or conclusion of the paper.

  • 04 June 2019

    We regret that our article ���Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions ��� (Sci China Chem, 2016, 59: 869���877) contained errors. The corrections in an erratum do not change or affect the result or conclusion of the paper.

References

  1. Reddad Z, Gerente C, Andres Y, Le Cloirec P. Environ Sci Technol, 2002, 36: 2067–2073

    Article  CAS  Google Scholar 

  2. Zhao YG, Li JX, Zhao LP, Zhang SW, Huang YS, Wang XL, Wang XK. Chem Eng J, 2014, 235: 275–283

    Article  CAS  Google Scholar 

  3. Li JX, Chen SY, Sheng GD, Hu J, Tan XL, Wang XK. Chem Eng J, 2011, 166: 551–558

    Article  CAS  Google Scholar 

  4. Chen JP. Bioresour Technol, 1997, 60: 185–189

    Article  CAS  Google Scholar 

  5. Qian LJ, Hu PZ, Jiang ZJ, Geng YX, Wu WS. Sci China Chem, 2010, 53: 1429–1437

    Article  CAS  Google Scholar 

  6. Chen CC, Hayes KF. Geochim Cosmochim Acta, 1999, 63: 3205–3215

    Article  CAS  Google Scholar 

  7. Lerf A, He H, Forster M, Klinowski J. J Photochem Photobiol B, 1998, 102: 4477–4482

    CAS  Google Scholar 

  8. Zhao GX, Ren XM, Gao X, Tan XL, Li JX. Dalton Trans, 2011, 40: 10945–10952

    Article  CAS  Google Scholar 

  9. Zhao GX, Li JX, Ren XM, Chen CL, Wang XK. Environ Sci Technol, 2011, 45: 10454–10462

    Article  CAS  Google Scholar 

  10. Huang ZH, Zheng X, Lv W, Wang M, Yang QH, Kang F. Langmuir, 2011, 27: 7558–7562

    Article  CAS  Google Scholar 

  11. Zhang SW, Zeng MY, Xu WQ, Li JX, Li J. Dalton Trans, 2013, 42: 7854–7858

    Article  CAS  Google Scholar 

  12. Hu R, Shao DD, Wang XK. Polym Chem, 2014, 5: 6207–6215

    Article  CAS  Google Scholar 

  13. Chen H, Shao DD, Li JX, Alsaedi A, Wang XK. Chem Eng J, 2014, 254: 623–634

    Article  CAS  Google Scholar 

  14. Chen H, Li JX, Zhang SW, Ren XM, Sun YB. Radiochim Acta, 2013, 101: 785–794

    Article  CAS  Google Scholar 

  15. Gao W, Wu G, Janicke MT, Cullen DA, Mukundan R. Angew Chem Int Ed, 2014, 53: 3588–3593

    Article  CAS  Google Scholar 

  16. Hummers WS, Offeman RE. J Am Chem Soc, 1958, 80: 1339

    Article  CAS  Google Scholar 

  17. Jahan M, Bao QL, Yang JX, Loh KP. J Am Chem Soc, 2010, 132: 14487–14495

    Article  CAS  Google Scholar 

  18. Sun YB, Wang Q, Chen CL, Tan XL, Wang XK. Environ Sci Technol, 2012, 46: 6020–6027

    Article  CAS  Google Scholar 

  19. Song WC, Shao DD, Lu SS, Wang XK. Sci China Chem, 2014, 57: 1291–1299

    Article  CAS  Google Scholar 

  20. Ren XM, Li JX, Tan XL, Wang XK. Dalton T, 2013, 42: 5266–5274

    Article  CAS  Google Scholar 

  21. Dzombak DA. Surface Complexation Modeling: Hydrous Ferric Oxide. Weinheim: John Wiley & Sons, 1990

    Google Scholar 

  22. Deo RP, Songkasiri W, Rittmann BE, Reed DT. Environ Sci Technol, 2010, 44: 4930–4935

    Article  CAS  Google Scholar 

  23. Manju G, Raji C, Anirudhan T. Water Res, 1998, 32: 3062–3070

    Article  CAS  Google Scholar 

  24. Chen CL, Hu J, Xu D, Tan XL, Meng YD, Wang XK. J Colloid Interf Sci, 2008, 323: 33–41

    Article  CAS  Google Scholar 

  25. Cole T, Bidoglio G, Soupioni M, O’Gorman M, Gibson N. Geochim Cosmochim Acta, 2000, 64: 385–396

    Article  CAS  Google Scholar 

  26. Chen CL, Hu J, Shao DD, Li JX, Wang XK. J Hazard Mater, 2009, 164: 923–928

    Article  CAS  Google Scholar 

  27. Wang XX, Yang SB, Shi WQ, Li JX, Hayat T, Wang XK. Environ Sci Technol, 2015, 49: 11721–11728

    Article  CAS  Google Scholar 

  28. Sun YB, Shao DD, Chen CL, Yang SB, Wang XK. Environ Sci Technol, 2013, 47: 9904–9910

    Article  CAS  Google Scholar 

  29. Pham TA, Kumar NA, Jeong YT. Synth Met, 2010, 160: 2028–2036

    Article  CAS  Google Scholar 

  30. Fan QH, Hao LM, Wang CL. Environ Sci Process Impacts, 2014, 16: 534–541

    Article  CAS  Google Scholar 

  31. Jin ZX, Wang XX, Sun YB, Ai YJ, Wang XK. Environ Sci Technol, 2015, 49: 9168–9175

    Article  CAS  Google Scholar 

  32. Yang SB, Hu J, Chen CL, Shao DD, Wang XK. Environ Sci Technol, 2011, 45: 3621–3627

    Article  CAS  Google Scholar 

  33. Shao DD, Li JX, Wang XK. Sci China Chem, 2014, 57: 1449–1458

    Article  CAS  Google Scholar 

  34. Wang XX, Chen ZS, Wang XK. Sci China Chem, 2015, 58: 1766–1773

    Article  CAS  Google Scholar 

  35. Niu ZW, Fan QH, Wang WH, Xu JZ, Chen L, Wu WS. Appl Radiat Isot, 2009, 67: 1582–1590

    Article  CAS  Google Scholar 

  36. Sun YB, Yang SB, Chen Y, Ding CC, Cheng WC, Wang XK. Environ Sci Technol, 2015, 49: 4255–4262

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxing Li or Xiangke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, X., Li, J. et al. Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions. Sci. China Chem. 59, 869–877 (2016). https://doi.org/10.1007/s11426-016-5594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5594-z

Keywords

Navigation