Skip to main content
Log in

Efficient removal of chlorophenols from water with a magnetic reduced graphene oxide composite

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A magnetic reduced graphene oxide composite (MRGO) was successfully prepared by a simple and green method. MRGO was then used as an adsorbent and found to exhibit enhanced removal efficiency for various chlorophenols (CPs) from water compared with its precursors, graphene oxide (GO) and reduced graphene oxide. The CPs were o-chlorophenol, p-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. Among them, 2,4,6-trichlorophenol, which exhibited the lowest water solubility and highest molecular weight, most easily bound to MRGO. The preferential interactions between MRGO and CPs were hydrophobic interactions (π-π stacking and hydrophobic effect). This result was confirmed by the equilibrium adsorption behavior in which isotherms were all well described by Freudlich model, indicating heterogeneous and multilayer adsorption. Therefore, CP adsorption was more favored under neutral and acidic conditions, and the decreased removal efficiency of MRGO at higher pH levels was due to the improved hydrophilicity of CPs for deprotonation effect. Moreover, MRGO showed fast removal of each CP, achieving adsorption equilibrium within 10.0 min, presented efficient separation from water under an external magnetic field, and was easily regenerated using dilute NaOH aqueous solution after reaching saturated adsorption. Adsorption capacity of the regenerated MRGO had almost no loss until after five cycles. In summary, MRGO was an efficient adsorbent for the removal of various CPs and had considerable application potential in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramos ME, Bonelli PR, Cukierman AL, Ribeiro Carrott MML, Carrott PJM. J Hazard Mater, 2010; 177: 175–182

    Article  CAS  Google Scholar 

  2. Kemp KC, Seema H, Saleh M, Le NH, Mahesh K, Chandra V, Kim KS. iNanoscale, 2013; 5: 3149–3171

    Article  CAS  Google Scholar 

  3. Chen GC, Shan XQ, Wang YS, Wen B, Pei ZG, Xie YN, Liu T, Pignatello JJ. Water Res, 2009; 43: 2409–2418

    Article  CAS  Google Scholar 

  4. Pei ZG, Li LY, Sun LX, Zhang SZ, Shan SQ, Yang S, Wen B. Carbon, 2013; 51: 156–163

    Article  CAS  Google Scholar 

  5. Simate GS, Iyuke SE, Ndlovu S, Heydenrych M. Water Res, 2012; 46: 1185–1197

    Article  CAS  Google Scholar 

  6. Lim SL, Chu WL, Phang SM. Bioresour Technol, 2010; 101: 7314–7322

    Article  CAS  Google Scholar 

  7. Madsen HT. Membrane Filtration in Water Treatment Removal of Micropollutants. Amsterdam: Elsevier, 2014. 199–248

    Google Scholar 

  8. Pan BC, Wan SL, Zhang SJ, Guo QW, Xu ZC, Lv L, Zhang WM. Sci China Chem, 2014; 57: 763–771

    Article  CAS  Google Scholar 

  9. Chi FT, Hu S, Xiong J, Wang XL. Sci China Chem, 2013; 56: 1495–1503

    Article  CAS  Google Scholar 

  10. Yang RT. Adsorbents: Fundamentals and Applications. Hoboken, New Jersey: John Wiley & Sons Inc, 2003

    Book  Google Scholar 

  11. Yan H, Li HJ, Tao X, Li K, Yang H, Li AM, Xiao SJ, Cheng RS. ACS Appl Mater Interfaces, 2014; 6: 9871–9880

    Article  CAS  Google Scholar 

  12. Crini G, Badot PM. Prog Polym Sci, 2008; 33: 399–447

    Article  CAS  Google Scholar 

  13. Hsu NH, Wang SL, Lin YC, Sheng GD, Lee JF. Environ Sci Technol, 2009; 43: 8801–8806

    Article  CAS  Google Scholar 

  14. Luo Y, Huang JG. Sci China Chem, 2014; 57: 1672–1682

    Article  CAS  Google Scholar 

  15. Wang WB, Wang AQ. Carbohydr Polym, 2010; 82: 83–91

    Article  CAS  Google Scholar 

  16. Chowdhury S, Balasubramanian R. Adv Colloid Interface Sci, 2014; 204: 35–56

    Article  CAS  Google Scholar 

  17. Chen H, Shao D, Li J, Wang XK. Chem Eng J, 2014, 254: 623–634

    Article  CAS  Google Scholar 

  18. Zhao G, Li J, Ren X, Chen C, Wang XK. Environ Sci Technol, 2011, 45: 10454–10462

    Article  CAS  Google Scholar 

  19. Sun Y, Shao D, Chen C, Yang S, Wang XK. Environ Sci Technol, 2013; 47: 9904–9910

    Article  CAS  Google Scholar 

  20. Hu R, Shao D, Wang XK. Polym Chem, 2014; 5: 6207–6215

    Article  CAS  Google Scholar 

  21. Dreyer DR, Park S, Bielawski CW, Ruoff RS. Chem Soc Rev, 2010; 39: 228–240

    Article  CAS  Google Scholar 

  22. Zhao G, Wen T, Chen C, Wang XK. Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Adv, 2012; 2: 9286–9303

    Article  CAS  Google Scholar 

  23. Zhao J, Wang Z, White JC, Xing BS. Environ Sci Technol, 2014; 48: 9995–10009

    Article  CAS  Google Scholar 

  24. Gomez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U. Nano Lett, 2010; 10: 1144–1148

    Article  CAS  Google Scholar 

  25. Zhao G, Jiang L, He Y, Li J, Dong H, Wang XK, Hu W. Adv Mater, 2011; 23: 3959–3963

    Article  CAS  Google Scholar 

  26. Sun Y, Yang S, Zhao G, Wang Q, Wang XK. Chem-Asian J, 2013; 8: 2755–2761

    Article  CAS  Google Scholar 

  27. Compton OC, Nguyen ST. Small, 2010; 6: 711–723

    Article  CAS  Google Scholar 

  28. Pei S, Cheng HM. Carbon, 2012; 50: 3210–3228

    Article  CAS  Google Scholar 

  29. Ngomsik AF, Bee A, Siaugue JM, Talbot D, Cabuil V, Cote G. J Hazard Mater, 2009; 166: 1043–1049

    Article  CAS  Google Scholar 

  30. Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascon JMD. J Phys Chem C, 2010; 114: 6426–6432

    Article  Google Scholar 

  31. Dean JA. Lange’s Handbook of Chemistry. New York: McGraw-Hill, 1999

    Google Scholar 

  32. Hummers WSJ, Offeman RE. J Am Chem Soc, 1958, 80: 1339

    Article  CAS  Google Scholar 

  33. Montes-Navajas P, Asenjo NG, Santamaria R, Menendez R, Corma A, Garcia H. Langmuir, 2013, 29: 13443–13448

    Article  CAS  Google Scholar 

  34. Tuinstra F. J Chem Phys, 1970; 53: 1126–1130

    Article  CAS  Google Scholar 

  35. Talyzin AV, Hausmaninger T, You S, Szabo T. Nanoscale, 2014; 6: 272–281

    Article  CAS  Google Scholar 

  36. Yao Y, Yang Z, Zhang D, Peng W, Sun H, Wang S. Ind Eng Chem Res, 2012; 51: 6044–6051

    Article  CAS  Google Scholar 

  37. Rodriguez-Perez L, Herranz MA, Martin N. Chem Commun, 2013; 49: 3721–3735

    Article  CAS  Google Scholar 

  38. Verwey EJW, Overbeek JTG. J Colloid Sci, 1955; 10: 224–225

    Article  CAS  Google Scholar 

  39. Ahmed SM. Canadian J Chem, 1966; 44: 1663–1670

    Article  CAS  Google Scholar 

  40. Yang K, Xing BS. Chem Rev, 2010; 110: 5989–6008

    Article  CAS  Google Scholar 

  41. Wang F, Haftka JJ, Sinnige TL, Hermens JL, Chen W. Environ Pollut, 2014; 186: 226–233

    Article  CAS  Google Scholar 

  42. Xu L, Li J, Zhang M. Ind Eng Chem Res, 2015; 54: 2379–2384

    Article  CAS  Google Scholar 

  43. Ihsanullah A, Asmaly HA, Saleh TA, Laoui T, Gupta VK, Atieh MA. J Mol Liq, 2015; 206: 176–182

    Article  CAS  Google Scholar 

  44. Langmuir I. J Am Chem Soc, 1918; 40: 1361–1403

    Article  CAS  Google Scholar 

  45. Freundlich H. Z Phys Chem, 1907; 57: 385–470

    CAS  Google Scholar 

  46. Wang J, Chen Z, Chen B. Environ Sci Technol, 2014; 48: 4817–4825

    Article  CAS  Google Scholar 

  47. Cheung CW, McKay G. Sep Purif Technol, 2005; 19: 55–64

    Article  Google Scholar 

  48. Chang J, Woo H, Ko MS, Lee J, Lee S, Yun ST, Lee S. J Hazard Mater, 2015; 296: 30–36

    Article  Google Scholar 

  49. Daraei H, Kamali H. Am J Environ Prot, 2014; 3: 144–151

    CAS  Google Scholar 

  50. Li X, Gai F, Guan B, Zhang Y, Liu Y, Huo Q. J Mater Chem, 2015, A3: 3988–3994

    Article  Google Scholar 

  51. Lagergren S. Kung Sven Veten Hand, 1898; 24: 1–39

    Google Scholar 

  52. McKay G, Ho YS. Chem Eng J, 1998; 70: 115–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Du, Q., Yang, H. et al. Efficient removal of chlorophenols from water with a magnetic reduced graphene oxide composite. Sci. China Chem. 59, 350–359 (2016). https://doi.org/10.1007/s11426-015-5482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5482-y

Keywords

Navigation