Skip to main content
Log in

High mobility organic semiconductors for field-effect transistors

  • Reviews
  • Special Topic Advances in Organic Optoelectronic Molecules & Materials
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic field-effect transistors (OFETs) are attracting more and more attention due to their potential applications in low-cost, large-area and flexible electronic products. Organic semiconductors (OSCs) are the key components of OFETs and basically determine the device performance. The past five years have witnessed great progress of OSCs. OSCs used for OFETs have made rapid progress, with field-effect mobility much larger than that of amorphous silicon (0.5–1.0 cm2/(V s)) and of up to 10 cm2/(V s) or even higher. In this review, we demonstrate the latest progress of OSCs for OFETs, where more than 50 representative OSCs are highlighted and analyzed to give some valuable insights for this important but challenging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A. Materials and applications for large area electronics: solution-based approaches. Chem Rev, 2010, 110: 3–24

    Article  CAS  Google Scholar 

  2. Gelinck G, Heremans P, Nomoto K, Anthopoulos TD. Organic transistors in optical displays and microelectronic applications. Adv Mater, 2010, 22: 3778–3798

    Article  CAS  Google Scholar 

  3. Sirringhaus H. 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater, 2014, 26: 1319–1335

    Article  CAS  Google Scholar 

  4. Dong HL, Fu XL, Liu J, Wang ZR, Hu WP. 25th Anniversary article: key points for high-mobility organic field-effect transistors. Adv Mater, 2013, 25: 6158–6182

    Article  CAS  Google Scholar 

  5. Jurchescu OD, Popinciuc M, van Wees BJ, Palstra TTM. Interface-controlled, high-mobility organic transistors. Adv Mater, 2007, 19: 688–692

    Article  CAS  Google Scholar 

  6. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science, 2004, 303: 1644–1646

    Article  CAS  Google Scholar 

  7. Yamagishi M, Takeya J, Tominari Y, Nakazawa Y, Kuroda T, Ikehata S, Uno M, Nishikawa T, Kawase T. High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators. Appl Phys Lett, 2007, 90: 182117

    Article  CAS  Google Scholar 

  8. Li LQ, Tang QX, Li HX, Yang XD, Hu WP, Song YB, Shuai ZG, Xu W, Liu YQ, Zhu DB. An ultra closely pi-stacked organic semiconductor for high performance field-effect transistors. Adv Mater, 2007, 19: 2613–2617

    Article  CAS  Google Scholar 

  9. Gao XK, Qiu WF, Liu YQ, Yu G, Zhu DB. Organic field-effect transistors based on tetrathiafulvalene derivatives. Pure Appl Chem, 2008, 80: 2405–2423

    Article  CAS  Google Scholar 

  10. Takahashi Y, Hasegawa T, Horiuchi S, Kumai R, Tokura Y, Saito G. High mobility organic field-effect transistor based on hexamethylenetetrathiafulvalene with organic metal electrodes. Chem Mater, 2007, 19: 6382–6384

    Article  CAS  Google Scholar 

  11. Anthony JE, Brooks JS, Eaton DL, Parkin SR. Functionalized pentacene: improved electronic properties from control of solid-state order. J Am Chem Soc, 2001, 123: 9482–9483

    Article  CAS  Google Scholar 

  12. Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao ZA. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature, 2011, 480: 504–508

    Article  CAS  Google Scholar 

  13. Park SK, Jackson TN, Anthony JE, Mourey DA. High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors. Appl Phys Lett, 2007, 91: 063514

    Article  CAS  Google Scholar 

  14. Diao Y, Tee BCK, Giri G, Xu J, Kim DH, Becerril HA, Stoltenberg RM, Lee TH, Xue G, Mannsfeld SCB, Bao ZN. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat Mater, 2013, 12: 665–671

    Article  CAS  Google Scholar 

  15. Watanabe M, Chang YJ, Liu SW, Chao TH, Goto K, Islam MM, Yuan CH, Tao YT, Shinmyozu T, Chow TJ. The synthesis, crystal structure and charge-transport properties of hexacene. Nat Chem, 2012, 4: 574–578

    Article  CAS  Google Scholar 

  16. Wang M, Li J, Zhao GY, Wu QH, Huang YG, Hu WP, Gao XK, Li HX, Zhu DB. High-performance organic field-effect transistors based on single and large-area aligned crystalline microribbons of 6,13-dichloropentacene. Adv Mater, 2013, 25: 2229–2233

    Article  CAS  Google Scholar 

  17. Okamoto H, Kawasaki N, Kaji Y, Kubozono Y, Fujiwara A, Yamaji M. Air-assisted high-performance field-effect transistor with thin films of picene. J Am Chem Soc, 2008, 130: 10470–10471

    Article  CAS  Google Scholar 

  18. Okamoto H, Hamao S, Goto H, Sakai Y, Izumi M, Gohda S, Kubozono Y, Eguchi R. Transistor application of alkyl-substituted picene. Sci Rep, 2014, 4: 5048

    CAS  Google Scholar 

  19. Zhang L, Fonari A, Liu Y, Hoyt ALM, Lee H, Granger D, Parkin S, Russell TP, Anthony JE, Bredas JL, Coropceanu V, Briseno AL. Bistetracene: an air-stable, high-mobility organic semiconductor with extended conjugation. J Am Chem Soc, 2014, 136: 9248–9251

    Article  CAS  Google Scholar 

  20. Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T. Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc, 2007, 129: 15732–15733

    Article  CAS  Google Scholar 

  21. Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S, Chiba R, Kumai R, Hasegawa T. Inkjet printing of single-crystal films. Nature, 2011, 475: 364–367

    Article  CAS  Google Scholar 

  22. Yuan YB, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB, Chen JH, Nordlund D, Toney MF, Huang JS, Bao ZN. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat Commun, 2014, 5: 3005

    Google Scholar 

  23. Amin AY, Khassanov A, Reuter K, Meyer-Friedrichsen T, Halik M. Low-voltage organic field effect transistors with a 2-tridecyl[1]-enzothieno[3,2-b][1]benzothiophene semiconductor layer. J Am Chem Soc, 2012, 134: 16548–16550

    Article  CAS  Google Scholar 

  24. Iino H, Okamoto H, Usui T Hanna J. Very high FET mobilities in organic field effect transistors fabricated with smectic liquid crystals. In: 25th International Liquid Conference (ILCC20141). Ireland, 2014

    Google Scholar 

  25. Yamamoto T, Takimiya K. Facile synthesis of highly pi-extended heteroarenes, dinaphtho[2,3-b:2′,3′-f]chalcogenopheno[3,2-b] chalco-genophenes, and their application to field-effect transistors. J Am Chem Soc, 2007, 129: 2224–2225

    Article  CAS  Google Scholar 

  26. Haas S, Takahashi Y, Takimiya K, Hasegawa T. High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors. Appl Phys Lett, 2009, 95: 022111

    Article  CAS  Google Scholar 

  27. Kang MJ, Doi I, Mori H, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H. Alkylated dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b] thiophenes (C-n-DNTTs): organic semiconductors for high-performance thin-film transistors. Adv Mater, 2011, 23: 1222–1225

    Article  CAS  Google Scholar 

  28. Niimi K, Kang MJ, Miyazaki E, Osaka I, Takimiya K. General synthesis of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) derivatives. Org Lett, 2011, 13: 3430–3433

    Article  CAS  Google Scholar 

  29. Nakayama K, Hirose Y, Soeda J, Yoshizumi M, Uemura T, Uno M, Li WY, Kang MJ, Yamagishi M, Okada Y, Miyazaki E, Nakazawa Y, Nakao A, Takimiya K, Takeya J. Patternable solution-crystallized organic transistors with high charge carrier mobility. Adv Mater, 2011, 23: 1626–1629

    Article  CAS  Google Scholar 

  30. Ou-Yang W, Uemura T, Miyake K, Onish S, Kato T, Katayama M, Kang M, Takimiya K, Ikeda M, Kuwabara H, Hamada M, Takeya J. High-performance organic transistors with high-k dielectrics: a comparative study on solution-processed single crystals and vacuum-deposited polycrystalline films of 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene. Appl Phys Lett, 2012, 101: 223304

    Article  CAS  Google Scholar 

  31. Sokolov AN, Atahan-Evrenk S, Mondal R, Akkerman HB, Sanchez-Carrera RS, Granados-Focil S, Schrier J, Mannsfeld SCB, Zoombelt AP, Bao ZN, Aspuru-Guzik A. From computational discovery to experimental characterization of a high hole mobility organic crystal. Nat Commun, 2011, 2: 437

    Article  CAS  Google Scholar 

  32. Mori T, Nishimura T, Yamamoto T, Doi I, Miyazaki E, Osaka I, Takimiya K. Consecutive thiophene-annulation approach to pi-extended thienoacene-based organic semiconductors with [1]benzothieno[3,2-b][1]benzothiophene (BTBT) substructure. J Am Chem Soc, 2013, 135: 13900–13913

    Article  CAS  Google Scholar 

  33. Kurihara N, Yao A, Sunagawa M, Ikeda Y, Terai K, Kondo H, Saito M, Ikeda H, Nakamura H. High-mobility organic thin-film transistors over 10 cm2/(V s) fabricated using bis(benzothieno) naphthalene polycrystalline films. Jpn J Appl Phys, 2013, 52: 05DC11

    Article  CAS  Google Scholar 

  34. Okamoto T, Mitsui C, Yamagishi M, Nakahara K, Soeda J, Hirose Y, Miwa K, Sato H, Yamano A, Matsushita T, Uemura T, Takeya J. V-shaped organic semiconductors with solution processability, high mobility, and high thermal durability. Adv Mater, 2013, 25: 6392–6397

    Article  CAS  Google Scholar 

  35. Sun YM, Ma YW, Liu YQ, Lin YY, Wang ZY, Wang Y, Di CG, Xiao K, Chen XM, Qiu WF, Zhang B, Yu G, Hu WP, Zhu DB. High-performance and stable organic thin-film transistors based on fused thiophenes. Adv Funct Mater, 2006, 16: 426–432

    Article  CAS  Google Scholar 

  36. Yang YS, Yasuda T, Kakizoe H, Mieno H, Kino H, Tateyama Y, Adachi C. High performance organic field-effect transistors based on single-crystal microribbons and microsheets of solution-processed dithieno[3,2-b:2′,3′-d] thiophene derivatives. Chem Commun, 2013, 49: 6483–6485

    Article  CAS  Google Scholar 

  37. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM. Two-dimensional charge transport in self- organized, high-mobility conjugated polymers. Nature, 1999, 401: 685–688

    Article  CAS  Google Scholar 

  38. Ong BS, Wu YL, Liu P, Gardner S. High-performance semicon-ducting polythiophenes for organic thin-film transistors. J Am Chem Soc, 2004, 126: 3378–3379

    Article  CAS  Google Scholar 

  39. Mcculloch I, Heeney M, Bailey C, Genevicius KIM, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang WM, Chabinyc ML, Kline RJ, Mcgehee MD, Toney MF. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater, 2006, 5: 328–333

    Article  CAS  Google Scholar 

  40. Kim J, Lim B, Baeg KJ, Noh YY, Khim D, Jeong HG, Yun JM, Kim DY. Highly soluble poly(thienylenevinylene) derivatives with charge-carrier mobility exceeding 1 cm2/(V s). Chem Mater, 2011, 23: 4663–4665

    Article  CAS  Google Scholar 

  41. Fei ZP, Pattanasattayavong P, Han Y, Schroeder BC, Yan F, Kline RJ, Anthopoulos TD, Heeney M. Influence of Side-chain regiochemistry on the transistor performance of high-mobility, all-donor polymers. J Am Chem Soc, 2014, 136: 15154–15157

    Article  CAS  Google Scholar 

  42. Jang SY Kim IB, Kim J, Khim D, Jung E, Kang B, Lim B, Kim Y, Jang YH, Cho K, Kim DY. New donor-donor type copolymers with rigid and coplanar structures for high-mobility organic field-effect transistors. Chem Mater, 2014, 26: 6907–6910

    Article  CAS  Google Scholar 

  43. Zhang M, Tsao HN, Pisula W, Yang CD, Mishra AK, Müllen K. Field-effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer. J Am Chem Soc, 2007, 129: 3472–3473

    Article  CAS  Google Scholar 

  44. Tsao HN, Cho DM, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K. Ultrahigh mobility in polymer field-effect transistors by design. J Am Chem Soc, 2011, 133: 2605–2612

    Article  CAS  Google Scholar 

  45. Wang SH, Kappl M, Liebewirth I, Müller M, Kirchhoff K, Pisula W, Mullen K. Organic field-effect transistors based on highly ordered single polymer fibers. Adv Mater, 2012, 24: 417–420

    Article  CAS  Google Scholar 

  46. Ying L, Hsu BBY, Zhan HM, Welch GC, Zalar P, Perez LA, Kramer EJ, Nguyen TQ, Heeger AJ, Wong WY, Bazan GC. Regioregular pyridal[2,1,3]thiadiazole pi-conjugated copolymers. J Am Chem Soc, 2011, 133: 18538–18541

    Article  CAS  Google Scholar 

  47. Tseng HR, Ying L, Hsu BBY, Perez LA, Takacs CJ, Bazan GC, Heeger AJ. High mobility field effect transistors based on macroscopically oriented regioregular copolymers. Nano Lett, 2012, 12: 6353–6357

    Article  CAS  Google Scholar 

  48. Tseng HR, Phan H, Luo C, Wang M, Perez LA, Patel SN, Ying L, Kramer EJ, Nguyen TQ, Bazan GC, Heeger AJ. High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv Mater, 2014, 26: 2993–2998

    Article  CAS  Google Scholar 

  49. Luo C, Kyaw AKK, Perez LA, Patel S, Wang M, Grimm B, Bazan GC, Kramer EJ, Heeger AJ. General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett, 2014, 14: 2764–2771

    Article  CAS  Google Scholar 

  50. Li J, Zhao Y, Tan HS, Guo YL, Di CA, Yu G, Liu YQ, Lin M, Lim SH, Zhou YH, Su HB, Ong BS. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep, 2012, 2: 754

    Google Scholar 

  51. Chen HJ, Guo YL, Yu G, Zhao Y, Zhang J, Gao D, Liu HT, Liu YQ. Highly p-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv Mater, 2012, 24: 4618–4622

    Article  CAS  Google Scholar 

  52. Kim G, Kang SJ, Dutta GK, Han YK, Shin TJ, Noh YY, Yang C. A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/(Vs) that substantially exceeds benchmark values for amorphous silicon semiconductors. J Am Chem Soc, 2014, 136: 9477–9483

    Article  CAS  Google Scholar 

  53. Lei T, Dou JH, Pei J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv Mater, 2012, 24: 6457–6461

    Article  CAS  Google Scholar 

  54. Hu YB, Gao XK, Di CA, Yang XD, Zhang F, Liu YQ, Li HX, Zhu DB. Core-expanded naphthalene diimides fused with sulfur heterocycles and end-capped with electron-withdrawing groups for air-stable solution-processed n-channel organic thin film transistors. Chem Mater, 2011, 23: 1204–1215

    Article  CAS  Google Scholar 

  55. Zhang FJ, Hu YB, Schuettfort T, Di CA, Gao XK, McNeill CR, Thomsen L, Mannsfeld SCB, Yuan W, Sirringhaus H, Zhu DB. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed n-channel organic thin-film transistors with mobility of up to 3.50 cm2/(V s). J Am Chem Soc, 2013, 135: 2338–2349

    Article  CAS  Google Scholar 

  56. Gao XK, Hu YB. Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design. J Mater Chem C, 2014, 2: 3099–3117

    Article  CAS  Google Scholar 

  57. Kang I, Yun HJ, Chung DS, Kwon SK, Kim YH. Record high hole mobility in polymer semiconductors via side-chain engineering. J Am Chem Soc, 2013, 135: 14896–14899

    Article  CAS  Google Scholar 

  58. Yun HJ, Cho J, Chung DS, Kim YH, Kwon SK. Comparative studies on the relations between composition ratio and charge transport of diketopyrrolopyrrole-based random copolymers. Macromolecules, 2014, 47: 7030–7035

    Article  CAS  Google Scholar 

  59. Yun HJ, Lee GB, Chung DS, Kim YH, Kwon SK. Novel diketopyrroloppyrrole random copolymers: high charge-carrier mobility from environmentally benign processing. Adv Mater, 2014, 26: 6612–6616

    Article  CAS  Google Scholar 

  60. Shukla D, Nelson SF, Freeman DC, Rajeswaran M, Ahearn WG, Meyer DM, Carey JT. Thin-film morphology control in naphthalene-diimide-based semiconductors: high mobility n-type semiconductor for organic thin-film transistors. Chem Mater, 2008, 20: 7486–7491

    Article  CAS  Google Scholar 

  61. Li HY, Tee BCK, Cha JJ, Cui Y, Chung JW, Lee SY, Bao ZN. High-mobility field-effect transistors from large-area solution-grown aligned C-60 single crystals. J Am Chem Soc, 2012, 134: 2760–2765

    Article  CAS  Google Scholar 

  62. Jones BA, Ahrens MJ, Yoon MH, Facchetti A, Marks TJ, Wasielewski MR. High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis (dicarboximides). Angew Chem Int Ed, 2004, 43: 6363–6366

    Article  CAS  Google Scholar 

  63. Soeda J, Uemura T, Mizuno Y, Nakao A, Nakazawa Y, Facchetti A, Takeya J. High electron mobility in air for N,N′-1H,1H-perfluorobutyldicyanoperylene carboxydiimide solution-crystallized thin-film transistors on hydrophobic surfaces. Adv Mater, 2011, 23: 3681–3685

    Article  CAS  Google Scholar 

  64. Molinari AS, Alves H, Chen Z, Facchetti A, Morpurgo AF. High electron mobility in vacuum and ambient for PDIF-CN2 single-crystal transistors. J Am Chem Soc, 2009, 131: 2462–2463

    Article  CAS  Google Scholar 

  65. Minder NA, Ono S, Chen ZH, Facchetti A, Morpurgo AF. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv Mater, 2012, 24: 503–508

    Article  CAS  Google Scholar 

  66. Lv AF, Puniredd SR, Zhang JH, Li ZB, Zhu HF, Jiang W, Dong HL, He YD, Jiang L, Li Y, Pisula W, Meng Q, Hu WP, Wang ZH. High mobility, air stable, organic single crystal transistors of an n-type diperylene bisimide. Adv Mater, 2012, 24: 2626–2630

    Article  CAS  Google Scholar 

  67. Oh JH, Suraru SL, Lee WY, Konemann M, Hoffken HW, Roger C, Schmidt R, Chung Y, Chen WC, Wurthner F, Bao ZN. High-performance air-stable n-type organic transistors based on core-chlorinated naphthalene tetracarboxylic diimides. Adv Funct Mater, 2010, 20: 2148–2156

    Article  CAS  Google Scholar 

  68. Stolte M, Gsanger M, Hofmockel R, Suraru SL, Würthner F. Improved ambient operation of n-channel organic transistors of solution-sheared naphthalene diimide under bias stress. Phys Chem Chem Phys, 2012, 14: 14181–14185

    Article  CAS  Google Scholar 

  69. He T, Stolte M, Würthner F. Air-stable n-channel organic single crystal field-effect transistors based on microribbons of core-chlorinated naphthalene diimide. Adv Mater, 2013, 25: 6951–6955

    Article  CAS  Google Scholar 

  70. Polander LE, Tiwari SP, Pandey L, Seifried BM, Zhang Q, Barlow S, Risko C, Bredas JL, Kippelen B, Marder SR. Solution-processed molecular bis(naphthalene diimide) derivatives with high electron mobility. Chem Mater, 2011, 23: 3408–3410

    Article  CAS  Google Scholar 

  71. Gao XK, Di CA, Hu YB, Yang XD, Fan HY, Zhang F, Liu YQ, Li HX, Zhu DB. Core-expanded naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malonitrile groups for high-performance, ambient-stable, solution-processed n-channel organic thin film transistors. J Am Chem Soc, 2010, 132: 3697–3699

    Article  CAS  Google Scholar 

  72. Hu YB, Qin YK, Gao XK, Zhang FJ, Di CA, Zhao Z, Li HX, Zhu DB. One-pot synthesis of core-expanded naphthalene diimides: enabling N-substituent modulation for diverse n-type organic materials. Org Lett, 2012, 14: 292–295

    Article  CAS  Google Scholar 

  73. Zhao Y, Di CA, Gao XK, Hu YB, Guo YL, Zhang L, Liu YQ, Wang JZ, Hu WP, Zhu DB. All-solution-processed, high-performance n-channel organic transistors and circuits: toward low-cost ambient electronics. Adv Mater, 2011, 23: 2448–2453

    Article  CAS  Google Scholar 

  74. Liang ZX, Tang Q, Xu JB, Miao Q. A soluble and stable N-heteropentacenes with high field-effect mobility. Adv Mater, 2011, 23: 1535–1539

    Article  CAS  Google Scholar 

  75. Liu DQ, Xu XM, Su YR, He ZK, Xu JB, Miao Q. Self-assembled monolayers of phosphonic acids with enhanced surface energy for high-performance solution-processed n-channel organic thin-film transistors. Angew Chem Int Ed, 2013, 52: 6222–6227

    Article  CAS  Google Scholar 

  76. Liu DQ, He ZK, Su YR, Diao Y, Mannsfeld SCB, Bao ZN, Xu JB, Miao Q. Self-assembled monolayers of cyclohexyl-terminated phosphonic acids as a general dielectric surface for for high-performance organic thin-film transistors. Adv Mater, 2014, 26: 7190–7196

    Article  CAS  Google Scholar 

  77. Islam MM, Pola S, Tao YT. High mobility n-channel single-crystal field-effect transistors based on 5,7,12,14-tetrachloro-6,13-diazapentacene. Chem Commun, 2011, 47: 6356–6358

    Article  CAS  Google Scholar 

  78. Wu QH, Li RJ, Hong W, Li HX, Gao XK, Zhu DB. Dicyanomethylene-substituted fused tetrathienoquinoid for high-performance, ambient-stable, solution-processable n-channel organic thin-film transistors. Chem Mater, 2011, 23: 3138–3140

    Article  CAS  Google Scholar 

  79. Qiao YL, Guo YL, Yu CM, Zhang FJ, Xu W, Liu YQ, Zhu DB. Diketopyrrolopyrrole-containing quinoidal small molecules for high-performance, air-stable, and solution-processable n-channel organic field-effect transistors. J Am Chem Soc, 2012, 134: 4084–4087

    Article  CAS  Google Scholar 

  80. Zhang C, Zang YP, Gann E, McNeill CR, Zhu XZ, Di CA, Zhu DB. Two-dimensional π-expanded quinoidalterthiophenes terminated with dicyanomethylenes as n-type semiconductors for high-performance organic thin-film transistors. J Am Chem Soc, 2014, 136: 16176–16184

    Article  CAS  Google Scholar 

  81. Yun SW, Kim JH, Shin S, Yang H, An BK, Yang L, Park SY. High-performance n-type organic semiconductors: incorporating specific electron-withdrawing motifs to achieve tight molecular stacking and optimized energy levels. Adv Mater, 2012, 24: 911–915

    Article  CAS  Google Scholar 

  82. Babel A, Jenekhe SA. High electron mobility in ladder polymer field-effect transistors. J Am Chem Soc, 2003, 125: 13656–13657

    Article  CAS  Google Scholar 

  83. Briseno AL, Kim FS, Babel A, Xia YN, Jenekhe SA. n-Channel polymer thin film transistors with long-term air-stability and durability and their use in complementary inverters. J Mater Chem, 2011, 21: 16461–16466

    Article  CAS  Google Scholar 

  84. Zhao XG, Zhan XW. Electron transporting semiconducting polymers in organic electronics. Chem Soc Rev, 2011, 40: 3728–3743

    Article  CAS  Google Scholar 

  85. Zhan XW, Tan ZA, Domercq B, An ZS, Zhang X, Barlow S, Li YF, Zhu DB, Kippelen B, Marder SR. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc, 2007, 129: 7246–7247

    Article  CAS  Google Scholar 

  86. Yan H, Chen ZH, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457: 679–686

    Article  CAS  Google Scholar 

  87. Luzio A, Criante L, D’Innocenzo V, Caironi M. Control of charge transport in a semiconducting copolymer by solvent-induced long-range order. Sci Rep, 2013, 3: 3425

    Article  Google Scholar 

  88. Huang H, Chen ZH, Ortiz RP, Newman C, Usta H, Lou S, Youn J, Noh YY, Baeg KJ, Chen LX, Facchetti A, Marks TJ. Combining electron-neutral building blocks with intramolecular “conformational locks” affords stable, high-mobility p- and n-channel polymer semiconductors. J Am Chem Soc, 2012, 134: 10966–10973

    Article  CAS  Google Scholar 

  89. Chen HJ, Guo YL, Mao ZP, Yu G, Huang JY, Zhao Y, Liu YQ. Naphthalenediimide-based copolymers incorporating vinyl-linkages for high-performance ambipolar field-effect transistors and complementary-like inverters under air. Chem Mater, 2013, 25: 3589–3596

    Article  CAS  Google Scholar 

  90. Kim R, Amegadze PSK, Kang I, Yun HJ, Noh YY, Kwon SK, Kim YH. High-mobility air-stable naphthalene diimide-based copolymer containing extended pi-conjugation for n-channel organic field effect transistors. Adv Funct Mater, 2013, 23: 5719–5727

    Article  CAS  Google Scholar 

  91. Kim R, Kang B, Sin DH, Choi HH, Kwon SK, Kim YH, Cho K. Oligo(ethyleneglycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and its effect on thin-film crystalline structure. Chem Commun, 2015, 51: 1524–1527

    Article  CAS  Google Scholar 

  92. Vasimalla S, Senanayak SP, Sharma M, Narayan KS, Iyer PK. Improved performance of solution-processed n-type organic field-effect transistors by regulating the intermolecular interactions and crystalline domains on macroscopic scale. Chem Mater, 2014, 26: 4030–4037

    Article  CAS  Google Scholar 

  93. Kim Y, Hong J, Oh JH, Yang C. Naphthalene diimide incorporated thiophene-free copolymers with acene and heteroacene units: comparison of geometric features and electron-donating strength of Co-units. Chem Mater, 2013, 25: 3251–3259

    Article  CAS  Google Scholar 

  94. Luzio A, Fazzi D, Nübling F, Matsidik R, Straub A, Komber H, Giussani E, Watkins SE, Barbatti M, Thiel W, Gann E, Thomsen L, McNeill CR, Caironi M, Sommer M. Srructure-function relationships of high-electron mobility naphthalene diimide copolymers prepared via direct arylation. Chem Mater, 2014, 26: 6233–6240

    Article  CAS  Google Scholar 

  95. Kanimozhi C, Yaacobi-Gross N, Chou KW, Amassian A, Anthopoulos TD, Patil S. Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors. J Am Chem Soc, 2012, 134: 16532–16535

    Article  CAS  Google Scholar 

  96. Kim G, Han AR, Lee HR, Lee J, Oh JH, Yang C. Acceptor-acceptor type isoindigo-based copolymers for high-performance n-channel field-effect transistors. Chem Commun, 2014, 50: 2180–2183

    Article  CAS  Google Scholar 

  97. Lei T, Dou JH, Cao XY, Wang JY, Pei J. Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2/(V s) under ambient conditions. J Am Chem Soc, 2013, 135: 12168–12171

    Article  CAS  Google Scholar 

  98. Lei T, Xia X, Wang JY, Liu CJ, Pei J. “Conformation locked” strong electron-deficient poly(p-phenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: synthesis, properties, and effects of fluorine substitution position. J Am Chem Soc, 2014, 136: 2135–2141

    Article  CAS  Google Scholar 

  99. Dou JH, Zheng YQ, Lei T, Zhang SD, Wang Z, Zhang WB, Wang JY, Pei J. Systematic investigation of side-chain branching position effect on electron carrier mobility in conjugated polymers. Adv Funct Mater, 2014, 24: 6270–6278

    Article  CAS  Google Scholar 

  100. Li HY, Kim FS, Ren GQ, Jenekhe SA. High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics. J Am Chem Soc, 2013, 135: 14920–14923

    Article  CAS  Google Scholar 

  101. Zhao Z, Zhang FJ, Hu YB, Wang ZL, Leng B, Gao XK, Di CA, Zhu DB. Naphthalenediimides fused with 2-(1,3-dithiol-2-ylidene)acetonitrile: strong electron-deficient building blocks for high-performance n-type polymeric semiconductors. ACS Macro Lett, 2014, 3: 1174–1177

    Article  CAS  Google Scholar 

  102. Zaumseil J, Sirringhaus H. Electron and ambipolar transport in organic field-effect transistors. Chem Rev, 2007, 107: 1296–1323

    Article  CAS  Google Scholar 

  103. Zhao Y, Guo YL, Liu YQ. 25th Anniversary article: recent advances in n-type and ambipolar organic field-effect transistors. Adv Mater, 2013, 25: 5372–5391

    Article  CAS  Google Scholar 

  104. Liang ZX, Tang Q, Mao RX, Liu DQ, Xu JB, Miao Q. The position of nitrogen in N-heteropentacenes matters. Adv Mater, 2011, 23: 5514–5518

    Article  CAS  Google Scholar 

  105. Yuen JD, Fan J, Seifter J, Lim B, Hufschmid R, Heeger AJ, Wudl F. High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J Am Chem Soc, 2011, 133: 20799–20807

    Article  CAS  Google Scholar 

  106. Chen ZY, Lee MJ, Ashraf RS, Gu Y, Albert-Seifried S, Nielsen MM, Schroeder B, Anthopoulos TD, Heeney M, McCulloch I, Sirringhaus H. High-performance ambipolar diketopyrrolopyrrole-thieno [3,2-b]-thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv Mater, 2012, 24: 647–652

    Article  CAS  Google Scholar 

  107. Long DX, Baeg KJ, Xu Y, Kang SJ, Kim MJ, Lee GW, Noh YY. Gradual controlling the work funciton of metal electrodes by solution-processed mixed interlayers for ambipolar polymer field-effect transistors and circuits. Adv Funct Mater, 2014, 24: 6484–6492

    Article  CAS  Google Scholar 

  108. Park JH, Jung EH, Jung JW, Jo WH. A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer. Adv Mater, 2013, 25: 2583–2588

    Article  CAS  Google Scholar 

  109. Lee J, Han AR, Yu H, Shin TJ, Yang C, Oh JH. Boosting the ambipolar performance of solution-processable polymer semicondu- ctors via hybrid side-chain engineering. J Am Chem Soc, 2013, 135: 9540–9547

    Article  CAS  Google Scholar 

  110. Han A, Dutta GK, Lee J, Lee HR, Lee SM, Ahn H, Shin TJ, Oh JH, Yang C. ɛ-Branched flexible side chain substituted diketopyrrolo-pyrrole-containing polymers designed for high hole and electron mobilities. Adv Funct Mater, 2015, 25: 247–254

    Article  CAS  Google Scholar 

  111. Sun B, Hong W, Yan ZQ, Aziz H, Li YN. Record high electron mobility of 6.3 cm2/(V s) achieved for polymer semiconductors using a new building block. Adv Mater, 2014, 26: 2636–2642

    Article  CAS  Google Scholar 

  112. Yun HJ, Kang SJ, Xu Y, Kim SO, Kim YH, Noh YY, Kwon SK. Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution. Adv Mater, 2014, 26: 7300–7307

    Article  CAS  Google Scholar 

  113. Lei T, Dou JH, Cao XY, Wang JY, Pei J. A BDOPV-based donor-acceptor polymer for high-performance n-type and oxygen-doped ambipolar field-effect transistors. Adv Mater, 2013, 25: 6589–6593

    Article  CAS  Google Scholar 

  114. Wang CL, Dong HL, Hu WP, Liu YQ, Zhu DB. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev, 2012, 112: 2208–2267

    Article  CAS  Google Scholar 

  115. Jiang W, Li Y, Wang ZH. Tailor-made rylene arrays for high performance n-channel semiconductors. Acc Chem Res, 2014, 47: 3135–3147

    Article  CAS  Google Scholar 

  116. Mei JG, Graham KR, Stalder R, Reynolds JR. Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells. Org Lett, 2010, 12: 660–663

    Article  CAS  Google Scholar 

  117. Ashraf RS, Kronemeijer AJ, James DI, Sirringhaus H, McCulloch I. A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chem Commun, 2012, 48: 3939–3941

    Article  CAS  Google Scholar 

  118. Li HY, Kim FS, Ren GQ, Hollenbeck EC, Subramaniyan S, Jenekhe SA. Tetraazabenzodifluoranthene diimides: building blocks for solution-processable n-type organic semiconductors. Angew Chem Int Ed, 2013, 52: 5513–5517

    Article  CAS  Google Scholar 

  119. Yan ZQ, Sun B, Li YN. Novel stable (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6(3H,7H)-dione based donor-acceptor polymer semiconductors for n-type organic thin film transistors. Chem Commun, 2013, 49: 3790–3792

    Article  CAS  Google Scholar 

  120. Stalder R, Mei JG, Graham KR, Estrada LA, Reynolds JR. Isoindigo, a versatile electron-deficient unit for high-performance organic electronics. Chem Mater, 2014, 26: 664–678

    Article  CAS  Google Scholar 

  121. Lei T, Wang JY, Pei J. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers. Acc Chem Res, 2014, 47: 1117–1126

    Article  CAS  Google Scholar 

  122. He YH, Hong W, Li YN. New building blocks for pi-conjugated polymer semiconductors for organic thin film transistors and photovoltaics. J Mater Chem C, 2014, 2: 8651–8661

    Article  CAS  Google Scholar 

  123. Chen ZH, Cai P, Chen JW, Liu XC, Zhang LJ, Lan LF, Peng JB, Ma YG, Cao Y. Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. Adv Mater, 2014, 26: 2586–2591

    Article  CAS  Google Scholar 

  124. He B, Pun AB, Zherebetskyy D, Liu Y, Liu F, Klivansky LM, McGough AM, Zhang BA, Lo K, Russell TP, Wang LW, Liu Y. New form of an old natural dye: bay-annulated indigo (BAI) as an excellent electron accepting unit for high performance organic semiconductors. J Am Chem Soc, 2014, 136: 15093–15101

    Article  CAS  Google Scholar 

  125. Mei JG, Kim DH, Ayzner AL, Toney MF, Bao ZA. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J Am Chem Soc, 2011, 133: 20130–20133

    Article  CAS  Google Scholar 

  126. Lei T, Wang JY, Pei J. Roles of flexible chains in organic semiconducting materials. Chem Mater, 2014, 26: 594–603

    Article  CAS  Google Scholar 

  127. Mei JG, Bao ZN. Side chain engineering in solution-processable conjugated polymers. Chem Mater, 2014, 26: 604–615

    Article  CAS  Google Scholar 

  128. Dong SQ, Bao C, Tian HK, Yan DH, Geng YH, Wang FS. ABAB- symmetric tetraalkyl titanyl phthalocyanines for solution processed organic field-effect transistors with mobility approaching 1 cm2/(V s). Adv Mater, 2013, 25: 1165–1169

    Article  CAS  Google Scholar 

  129. He P, Tu ZY, Zhao GY, Zhen YG, Geng H, Yi YP, Wang ZR, Zhang HT, Xu CH, Liu J, Lu XQ, Fu XL, Zhao Q, Zhang XT, Ji DY, Dong HL, Hu WP. Tuning the crystal polymorphs of alkyl thienoacene via solution self-assembly toward air-stable and high-performance organic field-effect transistors. Adv Mater, 2015, 27: 825–830

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xike Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Zhao, Z. High mobility organic semiconductors for field-effect transistors. Sci. China Chem. 58, 947–968 (2015). https://doi.org/10.1007/s11426-015-5399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5399-5

Keywords

Navigation