Skip to main content
Log in

Monodispersed AuPd nanoalloy: composition control synthesis and catalytic properties in the oxidative dehydrogenative coupling of aniline

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of AuPd@C nanoalloy catalysts with tunable compositions were successfully prepared by a co-reduction method. The use of borane-tert-butylamine complex as reductant and oleylamine as both solvent and reductant was very effective for the preparation of the monodispersed nanoalloy. We evaluated the catalytic activity of these AuPd@C nanoalloys for oxidative dehydrogenative coupling of aniline, which showed better catalytic activity than equal amounts of sole Au@C or Pd@C catalyst. The Au1Pd3@C catalyst exhibited the best performance, indicating that the conversion and selectivity were improved along with the increase of Pd composition. However if the Pd composition was too high in the AuPd alloy, Au1Pd7@C achieved only 81% conversion in this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang DS, Li YD. One-pot protocol for Au-base hybrid magnetic nanostructure via a noble-metal-induced reduction process. J Am Chem Soc, 2010, 132: 6280–6281

    Article  CAS  Google Scholar 

  2. Lu AH, Salabas EL, Schueth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed, 2007, 46: 1222–1244

    Article  CAS  Google Scholar 

  3. Xiang J, Li P, Chong HB, Feng L, Fu FY, Wang Z, Zhang SL, Zhu MZ. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res, 2014, 7: 1337–1343

    Article  CAS  Google Scholar 

  4. Klimov VI, Ivanov SA, Nanda J, Achermann M, Bezel I, McGuire JA, Piryatinski A. Single-exciton optical gain in semiconductor nanocrystals. Nature, 2007, 447: 441–446

    Article  CAS  Google Scholar 

  5. Yang Y, Chen O, Angerhofer A, Cao YC. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J Am Chem Soc, 2006, 128: 12428–12429

    Article  CAS  Google Scholar 

  6. Raimondi F, Scherer GG, Koetz R, Wokaun A. Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew Chem Int Ed, 2005, 44: 2190–2209

    Article  CAS  Google Scholar 

  7. Roucoux A, Schulz J, Patin H. Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev, 2002, 102: 3757–3778

    Article  CAS  Google Scholar 

  8. Niu ZQ, Wang DS, Yu R, Peng Q, Li YD. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem Sci, 2012, 3: 1925–1929

    Article  CAS  Google Scholar 

  9. Saleem F, Zhang ZC, Xu B, Xu XB, He PL, Wang X. Ultrathin Pt-Cu nanosheets and nanocones. J Am Chem Soc, 2013, 135: 18304–18307

    Article  CAS  Google Scholar 

  10. Wang SX, Meng XM, Das A, Li T, Song YB, Cao TT, Zhu XY, Zhu MZ, Jin RC. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25−x nanoclusters: the 13th silver atom matters. Angew Chem Int Ed, 2014, 53: 2376–2380

    Article  CAS  Google Scholar 

  11. Snyder J, McCue I, Livi K, Erlebacher J. Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc, 2012, 134: 8633–8645

    Article  CAS  Google Scholar 

  12. Chen W, Yu R, Li LL, Wang AN, Peng Q, Li YD. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew Chem Int Ed, 2010, 49: 2917–2921

    Article  CAS  Google Scholar 

  13. Zhu C, Peng HC, Zeng J, Liu JY, Gu ZZ, Xia YN. Facile synthesis of gold wavy nanowires and investigation of their growth mechanism. J Am Chem Soc, 2012, 134: 20234–20237

    Article  CAS  Google Scholar 

  14. Hansgen DA, Vlachos DG, Chen JG. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat Chem, 2010, 2: 484–489

    Article  CAS  Google Scholar 

  15. Hong JW, Kim D, Lee YW, Kim M, Kang SW, Han SW. Atomicdistribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals. Angew Chem Int Ed, 2011, 50: 8876–8880

    Article  CAS  Google Scholar 

  16. Yu WT, D Porosoff MG, Chen JG. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev, 2012, 112: 5780–5817

    Article  CAS  Google Scholar 

  17. Xi PX, Cao Y, Yang FC, Ma C, Chen FJ, Yu S, Wang S, Zeng ZZ, Zhang X. Facile synthesis of Pd-based bimetallic nanocrystals and their application as catalysts for methanol oxidation reaction. Nanoscale, 2013, 5: 6124–6130

    Article  CAS  Google Scholar 

  18. Kang SW, Lee YW, Park Y, Choi BS, Hong JW, Park KH, Han SW. One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance. ACS Nano, 2013, 7: 7945–7955

    Article  CAS  Google Scholar 

  19. Xia YN, Xiong YJ, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew Chem Int Ed, 2008, 48: 60–103

    Article  Google Scholar 

  20. Wang AN, Peng Q, and Li YD. Rod-shaped Au-Pd core-shell nanostructures. Chem Mater, 2011, 23: 3217–3222

    Article  CAS  Google Scholar 

  21. Sarina S, Zhu HY, Jaatinen E, Xiao Q, Liu HW, Jia JF, Chen C, Zhao J. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J Am Chem Soc, 2013, 135: 5793–5801

    Article  CAS  Google Scholar 

  22. Liu, HY, Yang Q. Facile fabrication of nanoporous Au-Pd bimetallic foams with high catalytic activity for 2-nitrophenol reduction and SERS property. J Mater Chem, 2011, 21: 11961–11967

    Article  CAS  Google Scholar 

  23. Pritchard J, Piccinini M, Tiruvalam R, He Q, Dimitratos N, Lopez-Sanchez JA, Morgan DJ, Carley AF, Edwards JK, Kielyb CJ, Hutchings GJ. Effect of heat treatment on Au-Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. Catal Sci Technol, 2013, 3: 308–317

    Article  CAS  Google Scholar 

  24. Zhang L, Zhang JW, Kuang Q, Xie SF, Jiang ZY, Xie ZX, Zheng LS. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J Am Chem Soc, 2011, 133: 17114–17117

    Article  CAS  Google Scholar 

  25. Wang F, Li CH, Sun LD, Wu HS, Ming T, Wang JF, Yu JC, Yan CH. Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. J Am Chem Soc, 2011, 133: 1106–1111

    Article  CAS  Google Scholar 

  26. Hong JW, Lee YW, Kim M, Kang SW, Han SW. One-pot synthesis and electrocatalytic activity of octapodal Au-Pd nanoparticles. Chem Commun, 2011, 47: 2553–2555

    Article  CAS  Google Scholar 

  27. Murugadoss A, Okumura K, Sakurai H. Bimetallic AuPd nanocluster catalysts with controlled atomic gold distribution for oxidative dehydrogenation of tetralin. J Phys Chem C, 2012, 116, 26776–26783

    Article  CAS  Google Scholar 

  28. Chen LY, Chen N, Hou Y, Wang ZC, Li SH, Fujita T, Jiang JH, Hirata A, Chen MW. Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/Au ratio for direct ethanol fuel cells. ACS Catal, 2013, 3: 1220–1230

    Article  CAS  Google Scholar 

  29. Li LS, Niu ZQ, Cai SF, Zhi Y, Li H, Rong HP, Liu LC, Liu L, He W, Li YD. A PdAg bimetallic nanocatalyst for selective reductive amination of nitroarenes. Chem Commun, 2013, 49: 6843–6845

    Article  CAS  Google Scholar 

  30. Mazumder V, Sun SH. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J Am Chem Soc, 2009, 131: 4588–4589

    Article  CAS  Google Scholar 

  31. Cai SF, Rong HP, Yu XF, Liu XW, Wang DS, He W, Li YD. Room temperature activation of oxygen by monodispersed metal nanoparticles: oxidative dehydrogenative coupling of anilines for azobenzene syntheses. ACS Catal, 2013, 3: 478–486

    Article  CAS  Google Scholar 

  32. Grirrane A, Corma A, Garcia H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science, 2008, 322: 1661–1664

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongting Sheng or Manzhou Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, F., He, S., Yang, S. et al. Monodispersed AuPd nanoalloy: composition control synthesis and catalytic properties in the oxidative dehydrogenative coupling of aniline. Sci. China Chem. 58, 1532–1536 (2015). https://doi.org/10.1007/s11426-015-5358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5358-1

Keywords

Navigation