Skip to main content
Log in

The effect of cation size (H+, Li+, Na+, and K+) on McLafferty-type rearrangement of even-electron ions in mass spectrometry

  • Articles
  • Special Topic Mass Spectrometry Analysis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Protonation and alkali-metal cation adduction are the most important ionization processes in soft-ionization mass spectrometry. Studies on the fragmentation mechanism of protonated and alkali-metal-cationized compounds in tandem mass spectrometry are essential and helpful for structural analysis. In some cases, it was often observed that a compound attached by different alkali-metal cations (or proton) exhibits similar fragmentation patterns but the relative abundances of product ions are different. This difference was considered to derive from the different electrostatic interactions of alkali-metal cations (or the bonded effect of proton) with the analyte. The alkali-metal cation with a smaller ionic radius shows stronger electrostatic interaction with the molecule because of its higher charge density. In addition, the bonded effect of the proton is stronger than the electrostatic interaction of the alkali-metal cation. In the present study, which used McLafferty-type rearrangements of even-electron ions ([M + Cat]+, Cat = H, Li, Na, K) as model reactions, the effect of cation size in mass spectrometric fragmentation reactions is highlighted. These considerations were also successfully applied to interpret the similar but distinct fragmentation behavior of proton and alkali-metal cation adducts of a synthetic compound (2-(acetamido(phenyl)methyl)-3-oxobutanoate) and a drug (entecavir).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prakash C, Shaffer CL, Nedderman A. Analytical strategies for identifying drug metabolites. Mass Spectrom Rev, 2007, 26: 340–369

    Article  CAS  Google Scholar 

  2. Mohamed R, Guy PA. The pivotal role of mass spectrometry in determining the presence of chemical contaminants in food raw materials. Mass Spectrom Rev, 2011, 30: 1073–1095

    Article  CAS  Google Scholar 

  3. Sun CR, Chen JJ, Pan YJ. Application of high performance liquid chromatography/mass spectrometry to rapid recognition of naturally occurring biologically active components. Sci Sin Chim, 2010, 40: 621–630

    Google Scholar 

  4. Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev, 2005, 24: 508–548

    Article  CAS  Google Scholar 

  5. Karni M, Mandelbaum A. The even-electron rule. Org Mass Spectrom, 1980, 15: 53–64

    Article  CAS  Google Scholar 

  6. McAdoo DJ. Ion-neutral complexes in unimolecular decompositions. Mass Spectrom Rev, 1988, 7: 363–393

    Article  CAS  Google Scholar 

  7. Bowen RD. Ion-neutral complexes. Acc Chem Res, 1991, 24: 364–371

    Article  CAS  Google Scholar 

  8. McLafferty FW. Mass spectrometric analysis broad applicability to chemical research. Anal Chem, 1956, 28: 306–316

    Article  CAS  Google Scholar 

  9. Kingston DGI, Bursey JT, Bursey MM. Intramolecular hydrogen transfer in mass spectra (II): the McLafferty rearrangement and related reactions. Chem Rev, 1974, 74: 215–242

    Article  CAS  Google Scholar 

  10. Nibbering NMM. The McLafferty rearrangement: a personal recollection. J Am Soc Mass Spectrom, 2004, 15: 956–958

    Article  CAS  Google Scholar 

  11. Zollinger M, Seibl J. McLafferty reactions in even-electron ions? Org Mass Spectrom, 1985, 20: 649–661

    Article  CAS  Google Scholar 

  12. Grossert JS, Cook MC, White RL. The influence of structural features on facile McLafferty-type, even-electron rearrangements in tandem mass spectra of carboxylate anions. Rapid Commun Mass Spectrom, 2006, 20: 1511–1516

    Article  CAS  Google Scholar 

  13. Van Stipdonk MJ, Kerstetter DR, Leavitt CM, Groenewold GS, Steill J, Oomens J. Spectroscopic investigation of H atom transfer in a gas-phase dissociation reaction: McLafferty rearrangement of model gas-phase peptide ions. Phys Chem Chem Phys, 2008, 10: 3209–3221

    Article  Google Scholar 

  14. Yang SZ, Liu XY, Mu BZ. The McLafferty rearrangement in the Glu residue in a cyclic lipopeptide determined by Q-TOF MS/MS. J Mass Spectrom, 2008, 43: 1673–1678

    Article  CAS  Google Scholar 

  15. Ramesh V, Srinivas R, Kumaraswamy G, Markondaiah B. Diastereoselectivity in the McLafferty-type rearrangement of protonated precursors of belactosin derivatives using electrospray ionization (ESI) and atmospheric pressure photo ionization (APPI) tandem mass spectrometry. J Mass Spectrom, 2009, 44: 285–287

    Article  CAS  Google Scholar 

  16. Anbalagan V, Patel JN, Niyakorn G, Van Stipdonk MJ. McLafferty-type rearrangement in the collision-induced dissociation of Li+, Na+ and Ag+ cationized esters of N-acetylated peptides. Rapid Commun Mass Spectrom, 2003, 17: 291–300

    Article  CAS  Google Scholar 

  17. De Winter J, Coulembier O, Dubois P, Gerbaux P. Collision-induced dissociation of polymer ions: charge driven decomposition for sodiumcationized polylactides and isomeric end-group distinction. Int J Mass Spectrom, 2011, 308: 11–17

    Article  Google Scholar 

  18. Fredenhagen A, Derrien C, Gassmann E. An MS/MS library on an ion-trap instrument for efficient dereplication of natural products. Different fragmentation patterns for [M + H]+ and [M + Na]+ ions. J Nat Prod, 2005, 68: 385–391

    Article  CAS  Google Scholar 

  19. Adams J. Charge-remote fragmentations: analytical applications and fundamental studies. Mass Spectrom Rev, 1990, 9: 141–186

    Article  CAS  Google Scholar 

  20. Cheng CF, Gross ML. Applications and mechanisms of chargeremote fragmentation. Mass Spectrom Rev, 2000, 19: 398–420

    Article  CAS  Google Scholar 

  21. Mao H, Wan JP, Pan YJ. Facile and diastereoselective synthesis of β-acetamido ketones and keto esters via direct Mannich-type reaction. Tetrahedron, 2009, 65: 1026–1032

    Article  CAS  Google Scholar 

  22. Bush MF, Forbes MW, Jockusch RA, Oomens J, Polfer NC, Saykally RJ, Williams ER. Infrared spectroscopy of cationized lysine and ∈-N-methyllysine in the gas phase: Effects of alkali-metal ion size and proton affinity on zwitterion stability. J Phys Chem A, 2007, 111: 7753–7760

    Article  CAS  Google Scholar 

  23. Yang B, Wu RR, Polfer NC, Berden G, Oomens J, Rodgers MT. IRMPD action spectroscopy of alkali metal cation-cytosine complexes: effects of alkali metal cation size on gas phase conformation. J Am Soc Mass Spectrom, 2013, 24: 1523–1533

    Article  CAS  Google Scholar 

  24. Kéki S, Deák G, Zsuga M. Fragmentation study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, using post-source decay matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom, 2001, 36: 1312–1316

    Article  Google Scholar 

  25. Ann QH, Adams J. Structure-specific collision-induced fragmentations of ceramides cationized with alkali-metal ions. Anal Chem, 1993, 65: 7–13

    Article  CAS  Google Scholar 

  26. Francis GJ, Forbes M, Volmer DA, Bohme DK. Periodicity in collisioninduced and remote-bond activation of alkali metal ions attached to polyether ionophores. Analyst, 2005, 130: 508–513

    Article  CAS  Google Scholar 

  27. Duan XY, Luo GA, Chen Y, Kong XL. Effects of alkali metal ion cationization on fragmentation pathways of triazole-epothilone. J Am Soc Mass Spectrom, 2012, 23: 1126–1134

    Article  CAS  Google Scholar 

  28. Zhao ZX, Wang HY, Xu C, Guo YL. Gas-phase synthesis of hydrodiphenylcyclopropenylium via nonclassical Favorskii rearrangement from alkali-cationized α,α’-dibromodibenzyl ketone. Rapid Commun Mass Spectrom, 2010, 24: 2665–2672

    Article  CAS  Google Scholar 

  29. Fang X, Yang JL. The effect of non-covalent binging of sodium to a peptide on the H/D exchange reaction. Sci Sin Chim, 2012, 42: 1202–1209

    Article  CAS  Google Scholar 

  30. Guo C, Zhou YP, Liu PY, Chai YF, Pan YJ. Gas phase chemistry of Li+ with amides: the observation of LiOH loss in mass spectrometry. J Am Soc Mass Spectrom, 2012, 23: 1191–1201

    Article  CAS  Google Scholar 

  31. Guo C, Hu N, Jiang KZ, Chen WX, Wang XX, Pan YJ. Study of fragmentation pathways of lithiated α,β-unsaturated thioesters by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom, 2010, 24: 409–414

    Article  CAS  Google Scholar 

  32. Warshel A, Sharma PK, Kato M, Xiang, Y, Liu HB, Olsson MHM. Electrostatic basis for enzyme catalysis. Chem Rev, 2006, 106: 3210–3235

    Article  CAS  Google Scholar 

  33. Schürer G, Clark T. Is the calcium-ion catalysis of biological reoxidation of reduced P QQ purely electrostatic? Chem Commun, 1998, (2): 257–258

    Google Scholar 

  34. Montero-Campillo MM, Cabaleiro-Lago EM, Rodriguez-Otero J. A theoretical study of pericyclic rearrangements catalyzed by lithium. J Phys Chem A, 2008, 112: 5218–5223

    Article  CAS  Google Scholar 

  35. Hofmann H, Clark T. Electrostatic catalysis of oxidation reactions by metal cations: an ab initio study. J Am Chem Soc, 1991, 113: 2422–2425

    Article  CAS  Google Scholar 

  36. Rivkin A. A review of entecavir in the treatment of chronic hepatitis B infection. Curr Med Res Opin, 2005, 21: 1845–1856

    Article  CAS  Google Scholar 

  37. Robinson DM, Scott LJ, Plosker GL. Entecavir. A review of its use in chronic hepatitis B. Drugs, 2006, 66: 1605–1622

    Article  CAS  Google Scholar 

  38. Cerda BA, Wesdemiotis C. Li+, Na+, and K+ binding to the DNA and RNA nucleobases. Bond energies and attachment sites from the dissociation of metal ion-bound heterodimers. J Am Chem Soc, 1996, 118: 11884–11892

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanJiang Pan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, Y., Pan, Y. The effect of cation size (H+, Li+, Na+, and K+) on McLafferty-type rearrangement of even-electron ions in mass spectrometry. Sci. China Chem. 57, 662–668 (2014). https://doi.org/10.1007/s11426-014-5085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5085-z

Keywords

Navigation