Skip to main content
Log in

18F-labeling techniques for positron emission tomography

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Much research effort has been made to understand various biological processes at levels of molecules using molecular imaging techniques. Because of great sensitivity, high resolution, and rapid detection, positron emission tomography (PET) imaging is becoming one of the most used imaging techniques for medical diagnose and pre-clinical studies. Here we provide a review on molecular imaging and PET imaging. An introduction is also provided on 18F-fluorine labeling techniques for the preparation of PET imaging probes. A summary and comparison of currently available 18F-fluorine labeling methods is provided. The perspectives for 18F-fluorine labeling techniques are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herschman HR. Molecular imaging: Looking at problems, seeing solutions. Science, 2003, 302: 605–608

    Article  CAS  Google Scholar 

  2. Tsien RY. Imagining imaging’s future. Nat Rev Mol Cell Biol, 2003: Ss16–Ss21

    Google Scholar 

  3. Doubrovin M, Serganova I, Mayer-Kuckuk P, Ponomarev V, Blasberg RG. Multimodality in vivo molecular-genetic imaging. Bioconjugate Chem 2004, 15: 1376–1388

    Article  CAS  Google Scholar 

  4. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discovery, 2008, 7: 591–607

    Article  CAS  Google Scholar 

  5. O’Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH. Non-invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol, 2013, 169: 719–735

    Article  CAS  Google Scholar 

  6. Alberti C. From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci, 2012, 16: 1925–1933

    CAS  Google Scholar 

  7. Blankenberg FG, Strauss HW. Recent advances in the molecular imaging of programmed cell death: Part II-Non-probe-based MRI, ultrasound, and optical clinical imaging techniques. J Nucl Med, 2013, 54: 1–4

    Article  CAS  Google Scholar 

  8. Czernin J, Weber WA, Herschman HR. Molecular imaging in the development of cancer therapeutics. Annu Rev Med, 2006, 57: 99–118

    Article  CAS  Google Scholar 

  9. Li K, Ding D, Zhao Q, Sun J, Tang BZ, Liu B. Biocompatible organic dots with aggregation-induced emission for in vitro and in vivo fluorescence imaging. Sci China Chem, 2013, 56: 1247–1252

    Google Scholar 

  10. Wang Z. Plasmon-resonant gold nanoparticles for cancer optical imaging. Sci China Phys Mech Astron, 2013, 56: 506–513

    Article  CAS  Google Scholar 

  11. Liu C, Han H, Ta D, Wang W. Effect of selected signals of interest on ultrasonic backscattering measurement in cancellous bones. Sci China Phys Mech Astron, 2013, 56: 1310–1316

    Article  Google Scholar 

  12. Wang W, Zhu J-J. Optical applications of quantum dots in biological system. Sci China Chem 2011, 54: 1177–1184

    Article  CAS  Google Scholar 

  13. Mather S. Molecular imaging with bioconjugates in mouse models of cancer. Bioconjugate Chem, 2009, 20: 631–643

    Article  CAS  Google Scholar 

  14. Li Y, Shionhara R, Iwami K, Ohta Y, Umeda N. Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry. Sci China Phys Mech Astron, 2011, 54: 2225–2229

    Article  CAS  Google Scholar 

  15. Wen J, Lu H, Wang X, Yuan K, Lue H, Zhou Y, Jin K, Yang G, Li W, Ruan K. Detection of protein microarrays by oblique-incidence reflectivity difference technique. Sci China Phys Mech Astron, 2010, 53: 306–309

    Article  CAS  Google Scholar 

  16. Yuan K, Wang X, Lu H, Wen J, Lu H, Zhou Y, Jin K-J, Yang G, Li W, Ruan K. Label-free detection of hybridization of oligonucleotides by oblique-incidence reflectivity difference method. Sci China Phys Mech Astron, 2010, 53: 1434–1437

    Article  CAS  Google Scholar 

  17. Yang W, Lin Y, Zhang X, Zhang J, Wang X. Synthesis of several MPP derivatives for Tc-99m-labelling and evaluated as potential 5-HT1A receptor imaging agents. Sci China Chem, 2011, 54: 1148–1154

    Article  CAS  Google Scholar 

  18. Zhu Z, Zhao X, Qin W, Chen G, Qian J, Xu Z. Fluorescent AIE dots encapsulated organically modified silica (ORMOSIL) nanoparticles for two-photon cellular imaging. Sci China Chem, 2012, 56: 1247–1252

    Article  CAS  Google Scholar 

  19. Yang H, Zhao B, Yan Q, Liu Y, Hu H. Decoding algorithms of single photon counting imager based on two-dimensional Vernier anodes. Sci China Phys Mech Astron, 2011, 54: 1943–1947

    Article  Google Scholar 

  20. Dobrucki LW, Sinusas AJ. Imaging angiogenesis. Curr Opin Biotechnol 2007, 18: 90–96

    Article  CAS  Google Scholar 

  21. Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev, 2008, 108: 1501–1516

    Article  CAS  Google Scholar 

  22. Le Bars D. Fluorine-18 and medical imaging: Radiopharmaceuticals for positron emission tomography. J Fluorine Chem, 2006, 127: 1488–1493

    Article  CAS  Google Scholar 

  23. Sun W, Ma W, Zhang R, Guo L, Jiang Y, Han L. Effects of the littlest Higgs model on the process e+e → µ+µ at a Z 0-factory. Sci China Phys Mech Astron, 2010, 53: 1961–1967

    Article  CAS  Google Scholar 

  24. Chang C, Wang J, Wu X. Production of a heavy quarkonium with a photon or via ISR at Z peak in e+e collider. Sci China Phys Mech Astron, 2010, 53: 2031–2036

    Article  CAS  Google Scholar 

  25. Budinger TF, Brennan KM, Moses WW, Derenzo SE. Advances in positron tomography for oncology. Nucl Med Biol, 1996, 23: 659–667

    Article  CAS  Google Scholar 

  26. Saha GB, Performance characteristics of PET Scanners. In: Basics of PET Imaging: Physics, Chemistry, and Regulations. Springer: New York, 2010. 97–113

    Chapter  Google Scholar 

  27. Vallabhajosula S. F-18-Labeled positron emission tomographic radiopharmaceuticals in oncology: An overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med, 2007, 37: 400–419

    Article  Google Scholar 

  28. Delacrois D, Guerre JP, Leblanc P, Hickman C. Radionuclide and Radiation Protection Data Handbook 2002. Nuclear Technology Publishing, 2002

    Google Scholar 

  29. Schlyer DJ. PET tracers and radiochemistry. Ann Acad Med Singap, 2004, 33: 146–154

    CAS  Google Scholar 

  30. Lodi F, Malizia C, Castellucci P, Cicoria G, Fanti S, Boschi S. Synthesis of oncological C-11 radiopharmaceuticals for clinical PET. Nucl Med Biol, 2012, 39: 447–460

    Article  CAS  Google Scholar 

  31. Tu Z, Mach RH. C-11 radiochemistry in cancer imaging applications. Curr Top Med Chem, 2010, 10: 1060–1095

    Article  CAS  Google Scholar 

  32. Toyohara J, Sakata M, Wu J, Ishikawa M, Oda K, Ishii, K, Iyo M, Hashimoto K, Ishiwata K. Preclinical and the first clinical studies on [(11)C]CHIBA-1001 for mapping alpha 7 nicotinic receptors by positron emission tomography. Ann Nucl Med, 2009, 23: 301–309

    CAS  Google Scholar 

  33. Ishiwata K, Tsukada H, Kubota K, Nariai T, Harada N, Kawamura K, Kimura Y, Oda K, Iwata R, Ishii K. Preclinical and clinical evaluation of O-[C-11]methyl-L-tyrosine for tumor imaging by positron emission tomography. Nucl Med Biol, 2005, 32: 253–262

    Article  CAS  Google Scholar 

  34. Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: Advances in preclinical and clinical research. Cancer Biother Radiopharm, 2009, 24: 379–393

    Article  CAS  Google Scholar 

  35. Smith SV. Molecular imaging with copper-64 in the drug discovery and development arena. Expert Opin Drug Discov, 2007, 2: 659–672

    Article  CAS  Google Scholar 

  36. Smith SV. Molecular imaging with copper-64. J Inorg Biochem 2004, 98: 1874–1901

    Article  CAS  Google Scholar 

  37. Cutler PD, Schwarz SW, Anderson CJ, Connett JM, Welch MJ, Philpott GW, Siegel BA. Dosimetry of copper-64-labeled monoclonal-antibody 1a3 as determined by pet imaging of the torso. J Nucl Med, 1995, 36: 2363–2371

    CAS  Google Scholar 

  38. Fani M, Andre JP, Maecke HR. Ga-68-PET: A powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging, 2008, 3: 53–63

    Article  CAS  Google Scholar 

  39. Morgat C, Hindie E, Mishra AK, Allard M, Fernandez P. Gallium-68: Chemistry and radiolabeled peptides exploring different oncogenic pathways. Cancer Biother Radiopharm, 2013, 28: 85–97

    Article  CAS  Google Scholar 

  40. Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with Zr-89: From radiochemistry to the clinic. Nucl Med Biol, 2013, 40: 3–14

    Article  CAS  Google Scholar 

  41. Varagnolo L, Stokkel MPM, Mazzi U, Pauwels EKJ. F-18-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl Med Biol, 2000, 27: 103–112

    Article  CAS  Google Scholar 

  42. Huang C, McConathy J. Fluorine-18 labeled amino acids for oncologic imaging with positron emission tomography. Curr Top Med Chem, 2013, 13: 871–891

    Article  CAS  Google Scholar 

  43. Zeng F, Goodman MM. Fluorine-18 radiolabeled heterocycles as pet tracers for imaging beta-amyloid plaques in Alzheimer’s disease. Curr Top Med Chem, 2013, 13: 909–919

    Article  CAS  Google Scholar 

  44. Helus F, Maierborst W, Sahm U, Wiebe LI. F-18 cyclotron production methods. Radiochem Radioanal Lett, 1979, 38: 395–410

    CAS  Google Scholar 

  45. Snell AH. In: Minutes of the Pasadena Meeting. Proceedings of the American Physical Society, Pasadena, December 18 and 19. Phys Rev: Pasadena, 1936. 142–150

    Google Scholar 

  46. Nickles RJ, Hichwa RD, Daube ME, Hutchins GD, Congdon DD. An O-18(2)-target for the high-yield production of F-18-fluoride. Int J Appl Radiat Is, 1983, 34: 625–629

    Article  CAS  Google Scholar 

  47. Ruth TJ, Wolf AP. Absolute cross-sections for the production of F-18 via the O-18 (P, N) F-18 reaction. Radiochim Acta, 1979, 26: 21–24

    CAS  Google Scholar 

  48. Kilbourn MR, Hood JT, Welch MJ. A simple O-18 water target for F-18 production. Int J Appl Radiat Is, 1984, 35: 599–602

    Article  CAS  Google Scholar 

  49. Peeples JL, Stokely MH, Doster JM. Thermal performance of batch boiling water targets for F-18 production. Appl Radiat Isot, 2011, 69: 1349–1354

    Article  CAS  Google Scholar 

  50. Ido T, Wan CN, Fowler JS, Wolf AP. Fluorination with F2 — Convenient synthesis of 2-deoxy-2-fluoro-D-glucose. J Org Chem 1977, 42: 2341–2342

    Article  CAS  Google Scholar 

  51. Fowler JS, MacGregor RR, Wolf AP, Farrell AA, Karlstrom KI, Ruth, TJ. A shielded synthesis system for production of 2-deoxy-2-[F-18]fluoro-D-glucose. J Nucl Med, 1981, 22: 376–380

    CAS  Google Scholar 

  52. Bida GT, Satyamurthy N, Barrio JR. The synthesis of 2-[F-18] fluoro-2-deoxy-D-glucose using glycals — A reexamination. J Nucl Med, 1984, 25: 1327–1334

    CAS  Google Scholar 

  53. Korytnyk W, Valentekovic-Horvat S. Reactions of glycals with xenon fluoride — An improved synthesis of 2-deoxy-2-fluorosaccharides. Tetrahedron Lett, 1980, 21: 1493–1496

    Article  CAS  Google Scholar 

  54. Shiue CY, To KC, Wolf AP. A rapid synthesis of 2-deoxy-2-fluorodeuterium-glucose from xenon difluoride suitable for labeling with F-18. J Labelled Compd Radiopharm, 1983, 20: 157–162

    Article  CAS  Google Scholar 

  55. Sood S, Firnau G, Garnett ES. Radiofluorination with xenon difluoride — A new high-yield synthesis of [F-18]2-fluoro-2-deoxydeuterium-glucose. Int J Appl Radiat Is, 1983, 34: 743–745

    Article  CAS  Google Scholar 

  56. Firnau G, Chirakal R, Sood S, Garnett ES. Radiofluorination with xenon difluoride-l-6[F-18]fluoro-dopa. J Labelled Compd Radiopharm, 1981, 18: 7–8

    Google Scholar 

  57. Firnau G, Chirakal R, Sood S, Garnett S. Aromatic fluorination with xenon difluoride — l-3,4-Dihydroxy-6-fluoro-phenylalanine. Can J Chem, 1980, 58: 1449–1450

    Article  CAS  Google Scholar 

  58. Hiller A, Fischer C, Jordanova A, Patt JT, Steinbach J. Investigations to the synthesis of n.c.a. F-18 FClO3 as electrophilic fluorinating agent. Appl Radiat Isot, 2008, 66: 152–157

    Article  CAS  Google Scholar 

  59. Shiue CY, Salvadori PA, Wolf AP, Fowler JS, Macgregor RR. A new improved synthesis of 2-deoxy-2-(F-18)fluoro-D-glucose from F-18-labeled acetyl hypofluorite. J Nucl Med, 1982, 23: 899–903

    CAS  Google Scholar 

  60. Ehrenkaufer RE, Potocki JF, Jewett DM. Simple synthesis of F-18-labeled 2-fluoro-2-deoxy-D-glucose — Concise communication. J Nucl Med, 1984, 25: 333–337

    CAS  Google Scholar 

  61. Bishop A, Satyamurthy N, Bida G, Barrio JR. Chemical reactivity of the F-18 electrophilic reagents from the O-18(p,n)F-18 gas target systems. Nucl Med Biol, 1996, 23: 559–565

    Article  CAS  Google Scholar 

  62. Lerman O, Tor Y, Hebel D, Rozen S. A novel electrophilic fluorination of activated aromatic rings using acetyl hypofluorite, suitable also for introducing F-18 into benzene nuclei. J Org Chem, 1984, 49: 806–813

    Article  CAS  Google Scholar 

  63. Hess E, Sichler S, Kluge A, Coenen HH. Synthesis of 2-[(18)F] fluoro-L-tyrosine via regiospecific fluoro-de-stannylation. Appl Radiat Isot 2002, 57: 185–191

    Article  CAS  Google Scholar 

  64. Dolle F, Demphel S, Hinnen F, Fournier D, Vaufrey F, Crouzel C. 6-[F-18]fluoro-L-DOPA by radiofluorodestannylation: A short and simple synthesis of a new labelling precursor. J Labell Compd Radiopharm, 1998, 41: 105–114

    Article  CAS  Google Scholar 

  65. Forsback S, Eskola O, Haaparanta M, Bergman J, Solin O. Electrophilic synthesis of 6-F-18 fluoro-L-DOPA using post-target produced F-18 F-2. Radiochim Acta, 2008, 96: 845–848

    Article  CAS  Google Scholar 

  66. Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[F-18]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic-substitution. J Nucl Med, 1986, 27: 235–238

    CAS  Google Scholar 

  67. Fuchtner F, Preusche S, Mading P, Zessin J, Steinbach J. Factors affecting the specific activity of [F-18]fluoride from a [O-18] water target. Nuklearmed Nucl Med, 2008, 47: 116–119

    CAS  Google Scholar 

  68. Schirrmacher R, Wangler C, Schirrmacher E. Recent developments and trends in F-18-radiochemistry: Syntheses and applications. Mini-Rev Org Chem, 2007, 4: 317–329

    Article  CAS  Google Scholar 

  69. Liu C, Jiang S. Preparation of two triflate precursors for O-(2-[18F] fluoroethyl)-L-tyrosine used in positron emission tomography (PET). Sci China Chem, 2009, 52: 2195–2199

    Article  CAS  Google Scholar 

  70. Alauddin MM, Fissekis JD, Conti PS. Synthesis of [F-18]-labeled adenosine analogues as potential PET imaging agents. J Labelled Compd Radiopharm, 2003, 46: 805–814

    Article  CAS  Google Scholar 

  71. Fookes CJR, Pham TQ, Mattner F, Loc’h C, Liu X, Berghofer P, Shepherd R, Gregoire MC, Katsifis A, Greguric I. Synthesis and biological evaluation of substituted [F-18]imidazo[1,2-a]pyridines and [F-18]pyrazolo [1,5-a]pyrimidines for the study of the peripheral benzodiazepine receptor using positron emission tomography. J Med Chem, 2008, 51: 3700–3712

    Article  CAS  Google Scholar 

  72. Gill HS, Tinianow JN, Ogasawara A, Flores JE, Vanderbilt AN, Raab H, Scheer JM, Vandlen R, Williains SP, Marik J. A modular platform for the rapid site-specific radiolabeling of proteins with (18)F exemplified by quantitative positron emission tomography of human epidermal growth factor receptor 2. J Med Chem, 2009, 52: 5816–5825

    Article  CAS  Google Scholar 

  73. Sachin K, Kim EM, Cheong SJ, Jeong HJ, Lim ST, Sohn MH, Kim DW. Synthesis of N(4)′-[(18)F]fluoroalkylated ciprofloxacin as a potential bacterial infection imaging agent for PET study. Bioconjugate Chem, 2010, 21: 2282–2288

    Article  CAS  Google Scholar 

  74. Gao MZ, Wang M, Miller KD, Sledge GW, Hutchins GD, Zheng QH. Synthesis of radiolabeled stilbene derivatives as new potential PET probes for aryl hydrocarbon receptor in cancers. Bioorg Med Chem Lett, 2006, 16: 5767–5772

    Article  CAS  Google Scholar 

  75. Viel T, Kuhnast B, Hinnen F, Boisgard R, Tavitian B, Dolle F. Fluorine-18 labelling of small interfering RNAs (siRNAs) for PET imaging. J Labelled Compd Radiopharm, 2007, 50: 1159–1168

    Article  CAS  Google Scholar 

  76. Kapur S, Jones C, DaSilva J, Wilson A, Houle S. Reliability of a simple non-invasive method for the evaluation of 5-HT2 receptors using [F-18]-setoperone PET imaging. Nucl Med Commun, 1997, 18: 395–399

    Article  CAS  Google Scholar 

  77. Flavell RR, Kothari P, Bar-Dagan M, Synan M, Vallabhajosula S, Friedman JM, Muir TW, Ceccarini G. Site-specific F-18-labeling of the protein hormone leptin using a general two-step ligation procedure. J Am Chem Soc, 2008, 130: 9106–9112

    Article  CAS  Google Scholar 

  78. Schottelius M, Berger S, Poethko T, Schwaiger M, Wester HJ. Development of novel Ga-68- and F-18-labeled GnRH-I analogues with high GnRHR-targeting efficiency. Bioconjugate Chem, 2008, 19: 1256–1268

    Article  CAS  Google Scholar 

  79. Pike VW, Aigbirhio FI. Reactions of cyclotron-produced [F-18] fluoride with diaryliodonium-salts — A novel single-step route to nocarrier-added [(18)]fluoroarenes. J Chem Soc Chem Commun, 1995: 2215-2216

  80. Chun J, Lu S, Lee YS, Pike VW. Radiofluorination of unsymmetrical diaryliodonium salt complies with the Curtin-Hammett principle. J Labelled Compd Radiopharm, 2009, 52: S159–S159

    Google Scholar 

  81. Chun JH, Lu SY, Lee YS, Pike VW. Fast and high-yield microreactor syntheses of ortho-substituted [(18)f]fluoroarenes from reactions of [(18)f]fluoride ion with diaryliodonium salts. J Org Chem, 2010, 75: 3332–3338

    Article  CAS  Google Scholar 

  82. Mu, L, Fischer, CR, Holland, JP, Becaud, J, Schubiger, PA, Schibli, R, Ametamey, SM, Graham, K, Stellfeld, T, Dinkelborg, LM, Lehmann L. 18F-Radiolabeling of aromatic compounds using triarylsulfonium salts. Eur J Org Chem, 2012: 889-892

  83. Chun J-H, Morse CL, Chinz FT, Pike VW. No-carrier-added F-18 fluoroarenes from the radiofluorination of diaryl sulfoxides. Chem Commun, 2013, (49): 2151–2153

    Google Scholar 

  84. Studenov AR, Adam MJ, Wilson JS, Ruth TJ. New radiolabelling chemistry: Synthesis of phosphorus-[F-18]fluorine compounds. J Labelled Compd Radiopharm, 2005, 48: 497–500

    Article  CAS  Google Scholar 

  85. McBride WJ, Sharkey RM, Karacay H, D’Souza CA, Rossi EA, Laverman P, Chang CH, Boerman OC, Goldenberg DM. A novel method of (18)F radiolabeling for PET. J Nucl Med, 2009, 50: 991–998

    Article  CAS  Google Scholar 

  86. McBride WJ, D’Souza CA, Sharkey RM, Karacay H, Rossi EA, Chang CH, Goldenberg DM. Improved (18)F labeling of peptides with a fluoride-aluminum-chelate complex. Bioconjugate Chem, 2010, 21: 1331–1340

    Article  CAS  Google Scholar 

  87. Laverman P, McBride WJ, Sharkey RM, Eek A, Joosten L, Oyen WJG, Goldenberg DM, Boerman OC. A novel facile method of labeling octreotide with (18)F-fluorine. J Nucl Med, 2010, 51: 454–461

    Article  CAS  Google Scholar 

  88. D’Souza CA, McBride WJ, Sharkey RM, Todaro LJ, Goldenberg DM. High-yielding aqueous 18F-labeling of peptides via Al18F chelation. Bioconjugate Chem, 2011, 22: 1793–1803

    Article  CAS  Google Scholar 

  89. Schirrmacher R, Bradtmoller G, Schirrmacher E, Thews O, Tillmanns J, Siessmeier T, Buchholz HG, Bartenstein P, Waengler B, Niemeyer CM, Jurkschat K. F-18-labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew Chem Int Ed, 2006, 45: 6047–6050

    Article  CAS  Google Scholar 

  90. Hoehne A, Mu L, Honer M, Schubiger PA, Ametamey SM, Graham K, Stellfeld T, Borkowski S, Berndorff D, Klar U, Voigtmann U, Cyr JE, Friebe M, Dinkelborg L, Srinivasan A. Synthesis, F-18-labeling, and in vitro and in vivo studies of bombesin peptides modified with silicon-based building blocks. Bioconjugate Chem, 2008, 19: 1871–1879

    Article  CAS  Google Scholar 

  91. Mu LJ, Hohne A, Schubiger RA, Ametamey SM, Graham K, Cyr JE, Dinkelborg L, Stellfeld T, Srinivasan A, Voigtmann U, Klar U. Silicon-based building blocks for one-step F-18-radiolabeling of peptides for PET imaging. Angew Chem Int Ed, 2008, 47: 4922–4925

    Article  CAS  Google Scholar 

  92. Iovkova L, Konning D, Wangler B, Schirrmacher R, Schoof S, Arndt HD, Jurkschat K. SiFA-modified phenylalanine: A key compound for the efficient synthesis of (18)F-labelled peptides. Eur J Inorg Chem, 2011: 2238-2246

  93. Kostikov AP, Iovkova L, Chin J, Schirrmacher E, Wangler B, Wangler C, Jurkschat K, Cosa G, Schirrmacher R. N-(4-(di-tert-butyl[(18)F]fluorosilyl)benzyl)-2-hydroxy-N,N-dimethylethylammonium bromide ([(18)F]SiFAN(+)Br(-)): A novel lead compound for the development of hydrophilic SiFA-based prosthetic groups for (18)F-labeling. J Fluorine Chem, 2011, 132: 27–34

    Article  CAS  Google Scholar 

  94. Wangler C, Waser B, Alke A, Iovkova L, Buchholz HG, Niedermoser S, Jurkschat K, Fottner C, Bartenstein P, Schirrmacher R, Reubi JC, Weste HJ, Wangler B. One-step (18)F-labeling of carbohydrate-conjugated octreotate-derivatives containing a siliconfluoride-acceptor (SiFA): In vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET). Bioconjugate Chem, 2010, 21: 2289–2296

    Article  CAS  Google Scholar 

  95. Iovkova L, Wangler B, Schirrmacher E, Schirrmacher R, Quandt G, Boening G, Schurmann M, Jurkschat K. para-Functionalized aryldi-tert-butylfluorosilanes as potential labeling synthons for (18)F radiopharmaceuticals. Chem Eur J, 2009, 15: 2140–2147

    Article  CAS  Google Scholar 

  96. Ting R, Adam MJ, Ruth TJ, Perrin DM. Arylfluoroborates and alkylfluorosilicates as potential PET imaging agents: High-yielding aqueous biomolecular F-18-labeling. J Am Chem Soc, 2005, 127: 13094–13095

    Article  CAS  Google Scholar 

  97. Ting R, Harwig C, auf dem Keller U, McCormick S, Austin P, Overall CM, Adam MJ, Ruth TJ, Perrin DM. Toward [F-18]-labeled aryltrifluoroborate radiotracers: In vivo positron emission tomography imaging of stable aryltrifluoroborate clearance in mice. J Am Chem Soc, 2008, 130: 12045–12055

    Article  CAS  Google Scholar 

  98. Ting R, Lo J, Adam MJ, Ruth TJ, Perrin, DM. Capturing aqueous [F-18]-fluoride with an arylboronic ester for PET: Synthesis and aqueous stability of a fluorescent [F-18]-labeled aryltrifluoroborate. J Fluorine Chem, 2008, 129: 349–358

    Article  CAS  Google Scholar 

  99. Ting R, Aguilera TA, Crisp JL, Hall DJ, Eckelman WC, Vera DR, Tsien RY. Fast (18)F labeling of a near-infrared fluorophore enables positron emission tomography and optical imaging of sentinel Lymph nodes. Bioconjugate Chem, 2010, 21: 1811–1819

    Article  CAS  Google Scholar 

  100. Jauregui-Osoro M, Sunassee K, Weeks AJ, Berry DJ, Paul RL, Cleij M, Banga J, O’Doherty MJ, Marsden PK, Clarke SEM, Ballinger JR, Szanda I, Cheng SY, Blower PJ. Synthesis and biological evaluation of [(18)F]tetrafluoroborate: A PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter. Eur J Nucl Med Mol Imaging, 2010, 37: 2108–2116

    Article  CAS  Google Scholar 

  101. Gao H, Lang L, Guo N, Cao F, Quan Q, Hu S, Kiesewetter DO, Niu G, Chen X. PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer F-18-AlF-NOTA-PRGD2. Eur J Nucl Med Mol Imaging, 2012, 39: 683–692

    Article  CAS  Google Scholar 

  102. Guo N, Lang L, Li W, Kiesewetter DO, Gao H, Niu G, Xie Q, Chen X. Quantitative analysis and comparison study of F-18 AlF-NOTA-PRGD2, 18F FPPRGD2 and Ga-68 Ga-NOTA-PRGD2 using a reference tissue model. PLoS One, 2012, 7: 103

    Article  Google Scholar 

  103. McBride WJ, D’Souza CA, Sharkey RM, Goldenberg DM. The radiolabeling of proteins by the F-18 AlF method. Appl Radiat Isot, 2012, 70: 200–204

    Article  CAS  Google Scholar 

  104. Crouch RD. Selective monodeprotection of bis-silyl ethers. Tetrahedron, 2004, 60: 5833–5871

    Article  CAS  Google Scholar 

  105. Rosenthal MS, Bosch AL, Nickles RJ, Gatley SJ. Synthesis and some characteristics of no-carrier added [F-18] fluorotrimethylsilane. Int J Appl Radiat Is, 1985, 36: 318–319

    Article  CAS  Google Scholar 

  106. Amigues E, Schulz J, Szlosek-Pinaud M, Fernandez P, Silvente-Poirot S, Brillouet S, Courbon F, Fouquet E. F-18 Si-RiboRGD: From design and synthesis to the imaging of alpha(v)beta(3) integrins in melanoma tumors. Chempluschem, 2012, 77: 345–349

    Article  CAS  Google Scholar 

  107. Kostikov AP, Chin J, Orchowski K, Niedermoser S, Kovacevic MM, Aliaga A, Jurkschat K, Waengler B, Waengler C, Wester H-J, Schirrmacher R. Oxalic acid supported Si-F-18-radiofluorination: One-step radiosynthesis of N-succinimidyl 3-(di-tert-butyl F-18 fluorosilyl) benzoate ( F-18 SiFB) for protein labeling. Bioconjugate Chem, 2012, 23: 106–114

    Article  CAS  Google Scholar 

  108. Joyard Y, Azzouz R, Bischoff L, Papamicael C, Labar D, Bol A, Bol V, Vera P, Gregoire V, Levacher V, Bohn P. Synthesis of new F-18-radiolabeled silicon-based nitroimidazole compounds. Bioorg Med Chem, 2013, 21: 3680–3688

    Article  CAS  Google Scholar 

  109. Ting R, Harwig CW, Lo J, Li Y, Adam MJ, Ruth TJ, Perrin DM. Substituent effects on aryltrifluoroborate solvolysis in water: Implications for Suzuki-Miyaura coupling and the design of stable F-18-labeled aryltrifluoroborates for use in PET imaging. J Org Chem, 2008, 73: 4662–4670

    Article  CAS  Google Scholar 

  110. Keller UAD, Bellac CL, Li Y, Lou YM, Lange PF, Ting R, Harwig C, Kappelhoff R, Dedhar S, Adam MJ, Ruth TJ, Benard F, Perrin DM, Overall CM. Novel matrix metalloproteinase inhibitor [F-18] marimastat-aryltrifluoroborate as a probe for in vivo positron emission tomography imaging in cancer. Cancer, Res 2010, 70: 7562–7569

    Article  CAS  Google Scholar 

  111. Li Y, Ting R, Harwig CW, Keller UAD, Bellac CL, Lange PF, Inkster JAH, Schaffer P, Adam MJ, Ruth TJ, Overall CM, Perrin DM. Towards kit-like F-18-labeling of marimastat, a noncovalent inhibitor drug for in vivo PET imaging cancer associated matrix metalloproteases. Medchemcomm, 2011, 2: 942–949

    Article  CAS  Google Scholar 

  112. Li Y, Guo J, Tang S, Lang L, Chen X, Perrin DM. One-step and one-pot-two-step radiosynthesis of cyclo-RGD-(18)F-aryltrifluoroborate conjugates for functional imaging. Am J Nucl Med Mol Imaging, 2013, 3: 44–56

    CAS  Google Scholar 

  113. Li Y, Liu Z, Lozada J, Wong MQ, Lin K-S, Yapp D, Perrin DM. Single step 18F-labeling of dimeric cycloRGD for functional PET imaging of tumors in mice. Nucl Med Biol, 2013, 40: 959–966

    Article  CAS  Google Scholar 

  114. Li Y, Liu Z, Harwig CW, Pourghiasian M, Lau J, Lin K-S, Schaffer P, Benard F, Perrin DM. (18)F-click labeling of a bombesin antagonist with an alkyne-(18)F-ArBF(3) (-): In vivo PET imaging of tumors expressing the GRP-receptor. Am J Nucl Med Mol Imaging, 2013, 3: 57–70

    CAS  Google Scholar 

  115. Weeks AJ, Jauregui-Osoro M, Cleij M, Blower JE, Ballinger JR, Blower PJ. Evaluation of [(18)F]-tetrafluoroborate as a potential PET imaging agent for the human sodium/iodide symporter in a new colon carcinoma cell line, HCT116, expressing hNIS. Nucl Med Commun, 2011, 32: 98–105

    Article  CAS  Google Scholar 

  116. Liu Z, Li Y, Lozada J, Wang M, Lin K-S, Yepp D, Perrin D. Novel F-18-radiolabeling of RGD at super high specific activity by isotope exchange. J Labelled Compd Radiopharm, 2013, 56: S167–S167

    Article  CAS  Google Scholar 

  117. Liu Z, Li Y, Lozada J, Wong MQ, Greene J, Lin K-S, Yapp D, Perrin DM. Kit-like (18)F-labeling of RGD-(19)F-Arytrifluroborate in high yield and at extraordinarily high specific activity with preliminary in vivo tumor imaging. Nucl Med Biol, 2013, 40: 841-9

    Google Scholar 

  118. Liu Z, Li Y, Lozada J, Schaffer P, Adam MJ, Ruth TJ, Perrin DM. Stoichiometric leverage: Rapid 18F-aryltrifluoroborate radiosynthesis at high specific activity for click conjugation. Angew Chem Int Ed, 2013, 52: 2303–2307

    Article  CAS  Google Scholar 

  119. Inkster JAH, Liu K, Ait-Mohand S, Schaffer P, Guerin B, Ruth TJ, Storr T. Sulfonyl fluoride-based prosthetic compounds as potential 18F labelling agents. Chem Eur J, 2012, 18: 11079–11087

    Article  CAS  Google Scholar 

  120. Zhang S, Yang K, Liu Z. Carbon nanotubes for in vivo cancer nanotechnology. Sci China Chem, 2010, 53: 2217–2225

    Article  CAS  Google Scholar 

  121. Bu H, Gao Y, Li Y. Overcoming multidrug resistance (MDR) in cancer by nanotechnology. Sci China Chem, 2010, 53: 2226–2232

    Article  CAS  Google Scholar 

  122. Xu X, Li C, Li H, Liu R, Jiang C, Wu Y, He B, Gu Z. Polypeptide dendrimers: Self-assembly and drug delivery. Sci China Chem, 2011, 54: 326–333

    Article  CAS  Google Scholar 

  123. Lee Y, Deng P. Review of micro/nano technologies and theories for electroporation of biological cells. Sci China Phys Mech Astron, 2012, 55: 996–1003

    Article  CAS  Google Scholar 

  124. Romero G, Murray RA, Qiu Y, Sanz D, Moya SE. Layer by layer surface engineering of poly(lactide-co-glycolide) nanoparticles: A versatile tool for nanoparticle engineering for targeted drug delivery. Sci China Chem, 2013, 56: 1029–1039

    Article  CAS  Google Scholar 

  125. Orbay H, Hong H, Zhang Y, Cai W. PET/SPECT imaging of hindlimb ischemia: focusing on angiogenesis and blood flow. Angiogenesis, 2013, 16: 279–287

    Article  CAS  Google Scholar 

  126. Bai J, Liu F, Liu X. Progress on multi-modality molecular imaging. Curr Med Imag Rev 2012, 8: 295–301

    Article  CAS  Google Scholar 

  127. Yankeelov TE, Peterson TE, Abramson RG, Garcia-Izquierdo D, Arlinghaus LR, Li X, Atuegwu NC, Catana C, Manning HC, Fayad ZA, Gore JC. Simultaneous PET-MRI m oncology: A solution looking for a problem? Magn Reson Imag, 2012, 30: 1342–1356

    Article  Google Scholar 

  128. Tomasi G, Rosso L. PET imaging: implications for the future of therapy monitoring with PET/CT in oncology. Curr Opin Pharmacol, 2012, 12: 569–575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y. 18F-labeling techniques for positron emission tomography. Sci. China Chem. 56, 1682–1692 (2013). https://doi.org/10.1007/s11426-013-5004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5004-8

Keywords

Navigation