Skip to main content
Log in

Effect of selected signals of interest on ultrasonic backscattering measurement in cancellous bones

  • Article
  • Special Topic: Modern Acoustics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

This study examined how the signals of interest (SOI) effect on the backscattering measurement numerically based on 3-D finite-difference time-domain (FDTD) method. High resolution microstructure mappings of bovine cancellous bones provided by micro-CT were used as the input geometry for simulations. Backscatter coefficient (BSC), integrated backscatter coefficient (IBC) and apparent integrated backscatter (AIB) were calculated with changing the start (L1) and duration (L2) of the SOI. The results demonstrated that BSC and IBC decrease as L1 increases, and AIB decreases more rapidly as L1 increases. The backscattering parameters increase with fluctuations as a function of L2 when L2 is less than 6 mm. However, BSC and IBC change little as L2 continues to increase, while AIB slowly decreases as L2 continues to increase. The results showed how the selections of the SOI effect on the backscattering measurement. An explicit standard for SOI selection was proposed in this study and short L1 (about 1.5 mm) and appropriate L2 (6 mm-12 mm) were recommended for the calculations of backscattering parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reginster J Y, Burlet N. Osteoporosis: A still increasing prevalence. Bone, 2006, 38: S4–S9

    Article  Google Scholar 

  2. Müller R, Häuselmann H J, Hildebrand T, et al. In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res, 1996, 11: 1745–1750

    Article  Google Scholar 

  3. Hakulinen M A, Saarakkala S, Toyras J, et al. Dual energy x-ray laser measurement of calcaneal bone mineral density. Phys Med Biol, 2003, 48: 1741–1752

    Article  Google Scholar 

  4. Shefelbine S J, Simon U, Claes L, et al. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone, 2005, 36: 480–488

    Article  Google Scholar 

  5. Morgan E F, Mason Z D, Chien K B, et al. Microcomputed tomography assessment of fracture healing: elationships among callus structure, composition and mechanical function. Bone, 2009, 44: 335–344

    Article  Google Scholar 

  6. Krieg M A, Barkmann R, Gonnelli S, et al. Quantitative ultrasound in the management of Osteoporosis: the 2007 ISCD official positions. J Clin Densitom, 2008, 11: 163–187

    Article  Google Scholar 

  7. Cheng J Q, Frederick S H, Tian Y, et al. Effects of phase cancellation and receiver aperture size on broadband ultrasonic attenuation for trabecular bone in vitro. Ultrasound Med Biol, 2011, 37: 2116–2125

    Article  Google Scholar 

  8. Nelson A M, Hoffman J J, Anderson C C, et al. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone. J Acoust Soc Am, 2011, 130(4): 3317–3326

    Google Scholar 

  9. Zhang C, Lawrence L, Zheng R, et al. Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms. J Acoust Soc Am, 2011, 129(5): 3317–3326

    Article  ADS  Google Scholar 

  10. Wear K A. Ultrasonic scattering from cancellous bone: A review. IEEE Trans UFFC, 2008, 55(7): 1432–1441

    Article  Google Scholar 

  11. Huang K, Ta D, Wang W Q, et al. Simplified inverse filter tracking algorithm for estimating the mean trabecular bone spacing. IEEE Trans UFFC, 2008, 55(7): 1453–1464

    Article  Google Scholar 

  12. Ta D, Wang W Q, Huang K, et al. Analysis of frequency dependence of ultrasonic backscatter coefficient in cancellous bone. J Acoust Soc Am, 2008, 124(6): 4083–4090

    Article  ADS  Google Scholar 

  13. Hoffmeister B K, Holt A P, Kaste S C. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone. Phys Med Biol, 2011, 56: 6243–6255

    Article  Google Scholar 

  14. Riekkinen O, Hakulinen M A, Timonen M, et al. Influence of overlying soft tissues on trabecular bone acoustic measurement at various ultrasound frequencies. Ultrasound Med Biol, 2006, 32(7): 1073–1083

    Article  Google Scholar 

  15. Machado C B, Pereira W C A, Granke M, et al. Experimental and simulation results on the effect of cortical bone mineralization in ultrasound axial transmission measurements: A model for fracture healing ultrasound monitoring. Bone, 2011, 48: 1202–1209

    Article  Google Scholar 

  16. Nagatani Y, Mizuno K, Saeki T, et al. Numerical and experimental study on the wave attenuation in bone-FDTD simulation of ultrasound propagation in cancellous bone. Ultrasonics, 2008, 48: 607–612

    Article  Google Scholar 

  17. Malo M K H, Karjalainen J P, Isaksson H, et al. Numerical analysis of uncertainties in dual frequency bone ultrasound technique. Ultrasound Med Biol, 2010, 36(2): 288–294

    Article  Google Scholar 

  18. Hosokawa A. Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone. IEEE Trans UFFC, 2010, 57(6): 1320–1328

    Article  ADS  Google Scholar 

  19. Hosokawa A. Numerical investigation of ultrasound refraction caused by oblique orientation of trabecular network in cancellous bone. IEEE Trans UFFC, 2011, 58(7): 1389–1396

    Article  Google Scholar 

  20. Luo G, Kaufman J J, Chiabrera A, et al. Computational methods for ultrasonic bone assessment. Ultrasound Med Biol, 1999, 25(5): 823–830

    Article  Google Scholar 

  21. Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 1986, 51: 889–901

    Article  ADS  Google Scholar 

  22. Frank D, John B, Shira L. Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. J Acoust Soc Am, 1996, 100(5): 3061–3068

    Article  Google Scholar 

  23. Collino F, Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem inanisotropic heterogeneous media. Geophysics, 2001, 66(1): 294–307

    Article  ADS  Google Scholar 

  24. Chaffaï S, Roberjot V, Peyrin F, et al. Frequency dependence of ultrasonic backscattering in cancellous bone: Autocorrelation model and experimental results. J Acoust Soc Am, 2000, 108(5): 2403–2411

    Article  ADS  Google Scholar 

  25. Chaffaï S, Peyrin F, Nuzzo S, et al. Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: Relationships to density and microstructure. Bone, 2002, 30(1): 229–237

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DeAn Ta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Han, H., Ta, D. et al. Effect of selected signals of interest on ultrasonic backscattering measurement in cancellous bones. Sci. China Phys. Mech. Astron. 56, 1310–1316 (2013). https://doi.org/10.1007/s11433-013-5113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5113-6

Keywords

Navigation