Skip to main content
Log in

Experimental and computational correlation and prediction on herbicide resistance for acetohydroxyacid synthase mutants to Bispyribac

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Bispyribac is a widely used herbicide that targets the acetohydroxyacid synthase (AHAS) enzyme. Mutations in AHAS have caused serious herbicide resistance that threatened the continued use of the herbicide. So far, a unified model to decipher herbicide resistance in molecular level with good prediction is still lacking. In this paper, we have established a new QSAR method to construct a prediction model for AHAS mutation resistance to herbicide Bispyribac. A series of AHAS mutants concerned with the herbicide resistance were constructed, and the inhibitory properties of Bispyribac against these mutants were measured. The 3D-QSAR method has been transformed to process the AHAS mutants and proposed as mutation-dependent biomacromolecular QSAR (MB-QSAR). The excellent correlation between experimental and computational data gave the MB-QSAR/CoMFA model (q 2 = 0.615, r 2 = 0.921, r 2 pred = 0.598) and the MB-QSAR/CoMSIA model (q 2 = 0.446, r 2 = 0.929, r 2 pred = 0.612), which showed good prediction for the inhibition properties of Bispyribac against AHAS mutants. Such MB-QSAR models, containing the three-dimensional molecular interaction diagram, not only disclose to us for the first time the detailed three-dimensional information about the structure-resistance relationships, but may also provide further guidance to resistance mutation evolution. Also, the molecular interaction diagram derived from MB-QSAR models may aid the resistance-evading herbicide design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chipman DM, Duggleby RG, Tittmann K. Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol, 2005, 9: 475–481

    Article  CAS  Google Scholar 

  2. Duggleby RG, McCourt JA, Guddat LW. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem, 2008, 46: 309–324

    Article  CAS  Google Scholar 

  3. McCourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids, 2006, 31: 173–210

    Article  CAS  Google Scholar 

  4. Gerwick BC, Subramanian MV, Loney-Gallant VI, Chandler DP, Mechanism of action of the 1,2,4-triazolo[1,5-a] pyrimidines. Pestic Sci, 1990, 29: 357–364

    Article  CAS  Google Scholar 

  5. Ray TB, Site of action of chlorsulfuron: Inhibition of valine and isoleucine biosynthesis in plants. Plant physiol, 1984, 75: 827–831

    Article  CAS  Google Scholar 

  6. Saari LL, Cotterman JC, Thill DC, Resistance to acetolactate synthase inhibiting herbicides. In: Powles SB, Holtum JAM, Editors. Herbicide Resistance in Plants: Biology and Biochemistry. Ann Arbor, MI: Lewis. 1994. 83–139

    Google Scholar 

  7. Shaner DL, Anderson PC, Stidham MA, Imidazolinones: Potent inhibitors of acetohydroxyacid synthase. Plant physiol, 1984, 76: 545–546

    Article  CAS  Google Scholar 

  8. Takahashi S, Shigematsu S, Morita A. KIH-2031, a new herbicide for cotton. In: Proceedings of the Brighton Crop Protection Conference, Brighton Crop Protection Council.: Farnham, U.K. 1991. 57–62

  9. Yu Q, Han HP, Vila-Aiub MM, Powles SB. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. J Exp Bot, 2010, 61: 3925–3934

    Article  CAS  Google Scholar 

  10. Tranel PJ, Wright TR. Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Sci, 2002, 50: 700–712

    Article  CAS  Google Scholar 

  11. Devine MD, Shukla A. Altered target sites as a mechanism of herbicide resistance. Crop Prot, 2000, 19: 881–889

    Article  CAS  Google Scholar 

  12. Beckie HJ, Tardif FJ, Herbicide cross resistance in weeds. Crop Prot, 2012, 35: 15–28

    Article  CAS  Google Scholar 

  13. Chen CN, Chen Q, Liu YC, Zhu XL, Niu CW, Xi Z, Yang GF. Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor. Bioorg Med Chem, 2010, 18: 4897–4904

    Article  CAS  Google Scholar 

  14. Chen CN, Lv LL, Ji FQ, Chen Q, Xu H, Niu CW, Xi Z, Yang GF. Design and synthesis of N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo[1,5-a]-pyrimidine-2-sulfonamide as acetohydroxyacid synthase inhibitor. Bioorg Med Chem, 2009, 17: 3011–3017

    Article  CAS  Google Scholar 

  15. He YZ, Li YX, Zhu XL, Xi Z, Niu CW, Wan J, Zhang L, Yang GF. Rational design based on bioactive conformation analysis of pyrimidinylbenzoates as acetohydroxyacid synthase inhibitors by integrating molecular docking, CoMFA, CoMSIA, and DFT calculations. J Chem Inf Model, 2007, 47: 2335–2344

    Article  CAS  Google Scholar 

  16. Ji FQ, Niu CW, Chen CN, Chen Q, Yang GF, Xi Z, Zhan CG. Computational design and discovery of conformationally flexible inhibitors of acetohydroxyacid synthase to overcome drug resistance associated with the W586L mutation. ChemMedChem, 2008, 3: 1203–1206

    Article  CAS  Google Scholar 

  17. Niu CW, Feng W, Zhou YF, Wen X, Xi Z. Homologous and heterologous interactions between catalytic and regulatory subunits of Escherichia coli acetohydroxyacid synthase I and III, Sci China Chem, 2009, 52: 1362–1371

    Article  CAS  Google Scholar 

  18. Yu ZH, Niu CW, Ban SR, Wen X, Xi Z. Study on structure-activity relationship of mutation-dependent herbicide resistance acetohydroxyacid synthase through 3D-QSAR and mutation. Chin Sci Bull, 2007, 52: 1929–1941

    Article  CAS  Google Scholar 

  19. Xi Z, Yu ZH, Niu CW, Ban SR, Yang GF. Development of a general quantum-chemical descriptor for steric effects: Density functional theory based QSAR study of herbicidal sulfonylurea analogues. J Comput Chem, 2006, 27: 1571–1576

    Article  CAS  Google Scholar 

  20. Niu XH, Liu X, Zhou YF, Xi Z, Su XD. Crystallization of Escherichia coli AHAS I regulatory subunit IlvN and Co-crystallization IlvN with a valine effector. Prog Biochem Biophys, 2012, 39: 45–50

    Article  CAS  Google Scholar 

  21. Yu ZH, Wen X, Xi Z. Insight into herbicide resistance of W574L mutant Arabidopsis thaliana acetohydroxyacid synthase: molecular dynamics simulations and binding free energy calculations. Sci China Chem, 2010, 53: 91–102

    Article  CAS  Google Scholar 

  22. Sadohara H. Nominee (Bispyribac-sodium): A new post-emergence herbicide in rice. Agrochemicals Japan, 1997, 0: 18–19

    Google Scholar 

  23. Fischer AJ, Bayer DE, Carriere MD, Ateh CM, Yim KO. Mechanisms of resistance to Bispyribac-sodium in an Echinochloa phyllopogon accession. Pest Biochem Physiol, 2000, 68: 156–165

    Article  CAS  Google Scholar 

  24. Clark RD. Prospective Ligand- and Target-Based 3D QSAR: State of the Art 2008. Curr Top Med Chem, 2009, 9: 791–810

    Article  CAS  Google Scholar 

  25. Du QS, Huang RB, Chou KC. Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr Protein Pept Sci, 2008, 9: 248–259

    Article  CAS  Google Scholar 

  26. Yang GF, Huang X. Development of quantitative structure-activity relationships and its application in rational drug design. Curr Pharm Des, 2006, 12: 4601–4611

    Article  CAS  Google Scholar 

  27. Xi Z, Niu CW, Ban SR, Li QX, Ouyang D, Huang MZ. Studies on herbicide design through mutation on herbicidal target acetohydroxyacid synthase (II). Effects of mutagenesis at tryptophan 464 of Escherichia coli acetohydroxyacid synthase II on herbicidal molecules. Nongyaoxue Xuebao, 2005, 7: 311–315

    CAS  Google Scholar 

  28. Xi Z, Niu CW, Li QX, Ouyang D, Ban SR. Studies on herbicide design through mutation on herbicidal target—Acetohydroxyacid synthase (I). Enzyme kinetics of wild type and mutants of E-coli AHAS II. Nongyaoxue Xuebao, 2005, 7: 215–220

    Article  CAS  Google Scholar 

  29. Chang AK, Duggleby RG. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: Characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J, 1998, 333: 765–777

    CAS  Google Scholar 

  30. Niu XH, Liu X, Zhou YF, Niu CW, Xi Z, Su XD. Preliminary X-ray crystallographic studies of the catalytic subunit of Escherichia coli AHAS II with its cofactors. Acta Crystallogr F-Struct Biol Cryst Commun, 2011, 67: 659–661

    Article  Google Scholar 

  31. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem, 1998, 19: 1639–1662

    Article  CAS  Google Scholar 

  32. Huey R, Morris GM, Olson AJ, Goodsell DS. A semiempirical free energy force field with charge-based desolvation. J Comput Chem, 2007, 28: 1145–1152

    Article  CAS  Google Scholar 

  33. McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA, 2006, 103: 569–573

    Article  CAS  Google Scholar 

  34. SYBYL. Version 6.9, Tripos Associates, St. Louis, Missouri, 2002

  35. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem, 2009, 30: 2785–2791

    Article  CAS  Google Scholar 

  36. Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem, 1994, 37: 4130–4146

    Article  CAS  Google Scholar 

  37. Bush BL, Nachbar RB Jr. Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J Comput Aided Mol Des, 1993, 7: 587–619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Xi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Niu, C., Li, H. et al. Experimental and computational correlation and prediction on herbicide resistance for acetohydroxyacid synthase mutants to Bispyribac. Sci. China Chem. 56, 286–295 (2013). https://doi.org/10.1007/s11426-013-4841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4841-9

Keywords

Navigation