Skip to main content
Log in

Synthesis of NAD analogs to develop bioorthogonal redox system

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Three new nicotinamide adenine dinucleotide (NAD) analogs were synthesized, and their characteristics as cofactors for Escherichia coli malic enzyme (ME) and its double mutant ME L310R/Q401C were analyzed. Each pair of the NAD analog and the double mutant showed good orthogonality to the natural pair of NAD and ME in terms of catalyzing oxidative decarboxylation of l-malic acid. Results indicated that molecular interactions between redox enzyme and cofactor could be further explored to generate new bioorthogonal redox systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belenky P, Bogan KL, Brenner C. NAD(+) metabolism in health and disease. Trends Biochem Sci, 2007, 32(1): 12–19

    Article  CAS  Google Scholar 

  2. Ying WH. NAD(+)/NADH and NADP(+)/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid Redox Signal, 2008, 10(2): 179–206

    Article  CAS  Google Scholar 

  3. Ji DB, Wang L, Hou SH, Liu WJ, Wang JX, Wang Q, Zhao ZK. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide. J Am Chem Soc, 2011, 133(51): 20857–20862

    Article  CAS  Google Scholar 

  4. Shah K, Liu Y, Deirmengian C, Shokat KM. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc Natl Acad Sci USA, 1997, 94(8): 3565–3570

    Article  CAS  Google Scholar 

  5. Lin Q, Jiang FY, Schultz PG, Gray NS. Design of allele-specific protein methyltransferase inhibitors. J Am Chem Soc, 2001, 123(47): 11608–11613

    Article  CAS  Google Scholar 

  6. Wang R, Zheng W, Yu H, Deng H, Luo M. Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-L-methionine analogues. J Am Chem Soc, 2011, 133(20): 7648–7651

    Article  CAS  Google Scholar 

  7. Mclachlan MJ, Chockalingam K, Lai KC, Zhao HM. Directed evolution of orthogonal ligand specificity in a single scaffold. Angew Chem Int Ed, 2009, 48(42): 7783–7786

    Article  CAS  Google Scholar 

  8. Doyle DF, Braasch DA, Jackson LK, Weiss HE, Boehm MF, Mangelsdorf DJ, Corey DR. Engineering orthogonal ligand-receptor pairs from “near drugs”. J Am Chem Soc, 2001, 123(46): 11367–11371

    Article  CAS  Google Scholar 

  9. Hassan AQ, Koh JT. A functionally orthogonal ligand-receptor pair created by targeting the allosteric mechanism of the thyroid hormone receptor. J Am Chem Soc, 2006, 128(27): 8868–8874

    Article  CAS  Google Scholar 

  10. Vincent F, Cook SP, Johnson EO, Emmert D, Shah K. Engineering unnatural nucleotide specificity to probe g protein signaling. Chem Biol, 2007, 14(9): 1007–1018

    Article  CAS  Google Scholar 

  11. Liu WJ, Wu SG, Hou SH, Zhao ZK. Synthesis of phosphodiester-type nicotinamide adenine dinucleotide analogs. Tetrahedron, 2009, 65(40): 8378–8383

    Article  CAS  Google Scholar 

  12. Hou SH, Liu WJ, Ji DB, Wang Q, Zhao ZK. Synthesis of 1,2,3-triazole moiety-containing NAD analogs and their potential as redox cofactors. Tetrahedron Lett, 2011, 52(44): 5855–5857

    Article  CAS  Google Scholar 

  13. Hou SH, Liu WJ, Zhao ZK. Synthesis of novel nicotinamide adenine dinucleotide (NAD) analogs and their coenzyme activities. Chin J Org Chem, 2012, 32(2): 349–353

    Article  CAS  Google Scholar 

  14. Abramova TV, Vasileva SV, Serpokrylova IY, Kless H, Silnikov VN. A facile and effective synthesis of dinucleotide 5′-triphosphates. Biorg Med Chem, 2007, 15: 6549–6555

    Article  CAS  Google Scholar 

  15. Yoshikaw M, Kato T, Takenish T. A novel method for phosphorylation of nucleosides to 5′-nucleotides. Tetrahedron Lett, 1 1967, (50): 5065–5068

    Article  Google Scholar 

  16. Beres J, Bentrude WG, Kruppa G, McKernan PA, Robins RK. Synthesis and antitumor and antiviral activities of a series of 1-beta-D-ribofuranosyl-5-halocytosine (5-halocytidine) cyclic 3′,5′-mono-phosphates. J Med Chem, 1985, 28(4): 418–42

    Article  CAS  Google Scholar 

  17. Wang JX, Tan HD, Zhao ZK. Over-expression, purification, and characterization of recombinant NAD-malic enzyme from Escherichia coli K12. Protein Expr Purif, 2007, 53(1): 97–103

    Article  CAS  Google Scholar 

  18. Ji DB, Wang L, Zhou YJ, Yang W, Wang Q, Zhao ZK. Oxidative decarboxylation of L-malate by using a synthetic bioredox system. Chin J Catal, 2012, 33(3): 530–535

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. ZongBao Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, D., Wang, L., Liu, W. et al. Synthesis of NAD analogs to develop bioorthogonal redox system. Sci. China Chem. 56, 296–300 (2013). https://doi.org/10.1007/s11426-012-4815-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4815-3

Keywords

Navigation