Skip to main content
Log in

Lithium naphthalenides in non-polar or in low-polarity media: some insights regarding their use as initiators in anionic polymerizations

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The synthesis of bidirectional anionic initiators by the reaction between metallic lithium (Li) and naphthalene (Naph), under mild conditions, in non-polar (benzene) or low-polarity media (benzene/THF mixtures) is reported. The efficiency of these initiators to provide macromolecules with well-defined structures was demonstrated. Model linear homopolymers from styrene (S) or hexamethyl(ciclotrisiloxane) (D3) monomers were synthesized using classical anionic polymerization (high-vacuum techniques). The model polymers obtained were analyzed using the conventional analytical techniques, and showed narrow molar mass distributions, a broad range of molar masses (from 3000 to 1,000,000 g/mol) and polydispersity indexes (M w/M n) lower than 1.1. High molar mass polymers were obtained using pure benzene as solvent, whereas lower molar masses were obtained in benzene/THF mixtures in which the concentration of THF was lower than 10 % v/v. The ratio [Li]/[Naph] and the nature of the reaction medium are the experimental parameters to be controlled to obtain the desired lithium naphthalenides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duncan R (2003) Nat Rev Drug Discovery 2:349–360

    Article  Google Scholar 

  2. Greer SC (1998) Physical chemistry of equilibrium polymerization. J Phys Chem B 102:5413–5422

    Article  CAS  Google Scholar 

  3. Farkas E, Meszena ZG, Johnson AF (2004) Molecular weight distribution design with living polymerization reactions. Ind Eng Chem Res 43:7356–7360

    Article  CAS  Google Scholar 

  4. Szwarc M, Van Beylen M, Van Hoyweghen D (1987) Simultaneity of initiation and propagation in living polymer systems. Macromolecules 20:445–448

    Article  CAS  Google Scholar 

  5. Matyjaszewsky K (2005) Macromolecular engineering: from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog Polym Sci 30:858–875

    Article  Google Scholar 

  6. Ciolino AE, Satti AJ, Villar MA (2011) Initiators for anionic polymerization: old and news developments. In: Ackrine W (ed) Polymer initiators, Chapter 1, 1st edn. Nova Science Publishers, Hauppauge, pp 1–58 (and references therein cited)

  7. Szwarc M, Levy M, Milkovich R (1956) polymerization initiated by electron transfer to monomer. a new method of formation of block polymers. J Am Chem Soc 78:2656–2657

    Article  CAS  Google Scholar 

  8. Szwarc M (1956) Living polymers. Nature 178:1168–1169

    Article  CAS  Google Scholar 

  9. Baskaran D, Müller AHE (2007) Anionic vinyl polymerization—50 years after Michael Szwarc. Prog Polym Sci 32:173–219

    Article  CAS  Google Scholar 

  10. Fetters L, Morton M (1969) Synthesis and properties of block polymers. I. Poly-α-methylstyrene-polyisoprene-poly-α-methylstyrene. Macromolecules 2:453–458

    Article  CAS  Google Scholar 

  11. Fetters L (1966) J Res Natl Bureau Stand A Phys Chem 70A:421

    Article  Google Scholar 

  12. Morton M, Kammereck R, Fetters L (1971) Synthesis and properties of block polymers. II. Poly(α-methylstyrene)-poly(propylene sulfide)-poly(α-methylstyrene). Macromolecules 4:11–15

    Article  Google Scholar 

  13. Worsfold D, Bywater S (1960) Anionic polymerization of styrene: conductivity measurements. J Chem Soc, pp 5234–5238

  14. Worsfold D, Bywater S (1957) Anionic polymerization of α-methylstyrene. J Polym Sci 26:299–304

    Article  CAS  Google Scholar 

  15. Roovers J, Toporowski P (1983) Synthesis of high molecular weight ring polystyrenes. Macromolecules 16:843–849

    Article  CAS  Google Scholar 

  16. Hsieh H, Quirk R (1996). Anionic polymerization: principles and practical applications, Chapter 5. Marcel Dekker, New York, pp 93–110

  17. Hsieh H, Quirk R (1996). Anionic polymerization: principles and practical applications, Chapter 11. Marcel Dekker, New York, pp 261–306

  18. Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S (2000) Anionic polymerization: high vacuum techniques. J Polym Sci Part A Polym Chem 38:3211–3234

  19. Uhrig D, Mays J (2005) Experimental techniques in high-vacuum anionic polymerization. J Polym Sci Part A Polym Chem 43:6179–6222

  20. Seyferth D (2009) The grignard reagents. Organometallics 28:1598–1605

    Article  CAS  Google Scholar 

  21. Ishizu K, Kanno H (1996) Novel synthesis and characterization of cyclic polystyrenes. Polymer 37:1487–1492

    Article  CAS  Google Scholar 

  22. Kim J, Lee M, Ryu C, Lee J, Hwang S, Park T, Kim K, Yoon H, Ahn B, Char K, Ryu J, Quirk R (1994) Synthesis of dilithium α, ω-disulfonated polystyrene by anionic polymerization. Polym J 26:1111–1117

    Article  CAS  Google Scholar 

  23. Dong D, Hogen-Esch TE (2001) Synthesis and characterization of macrocyclic poly(α-methylstyrene). e-Polymers 7:54–65

  24. Hsieh H, Kao H, Cheng O, Tsiang R, Huang D (1995) Polymerization of styrene-butadiene block copolymers using a dicarbanion initiator made by the reaction of lithium with. alpha.-methylstyrene. Macromolecules 28:4383–4390

    Article  CAS  Google Scholar 

  25. Rummel S, Ilatovskaya MA, Yunusov SM, Kalyuzhnaya ES, Shur VB (2009) Activation of C-H bonds of hydrocarbons by the ArH–alkali metal systems in THF (ArH–naphthalene, biphenyl, anthracene, phenanthrene, trans-stilbene, pyrene). Alkylation of naphthalene and toluene with ethene. J Organomet Chem 694:1459–1466

    Article  CAS  Google Scholar 

  26. Fetters L, Kamienski C, Morrison R, Young R (1979) Remarks on organodilithium initiators. Macromolecules 12:344–346

    Article  CAS  Google Scholar 

  27. Melero C, Guijarro A, Yus M (2009) Structural characterization and bonding properties of lithium naphthalene radical anion, [Li+(TMEDA)2][C10H8·], and lithium naphthalene dianion [(Li+TMEDA)2C10H −28 ]. Dalton Trans 8:1286–1289. doi:10.1039/B821119C

    Article  Google Scholar 

  28. Yus M, Herrera R, Guijarro A (2002) On the mechanism of arene-catalyzed lithiation: the role of arene dianions—naphthalene radical anion versus naphthalene dianion. Chem Eur J 8:2574–2584

    Article  CAS  Google Scholar 

  29. Kurata M, Tsunashima Y (1999) Section VII: solution properties. In: Immergut EH, Grulke EA (eds) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  30. Seyferth D (2006) Alkyl and aryl derivatives of the alkali metals: useful synthetic reagents as strong bases and potent nucleophiles. 1. Conversion of organic halides to organoalkali-metal compounds. Organometallics 25:2–24

    Article  CAS  Google Scholar 

  31. Matmour R, Lebreton A, Tsitsilianis C, Kallitsis I, Héroguez V, Gnanou Y (2005) Tri- and tetracarbanionic initiators by a lithium/halide exchange reaction: application to star-polymer synthesis. Ang Chem Int Ed 44(2):284–287

    Article  CAS  Google Scholar 

  32. Rogers M (1946) The electric moment of n-butyllithium and the nature of the lithium-carbon bond. J Am Chem Soc 68:2748

    Article  CAS  Google Scholar 

  33. Carnahan J, Closson W (1972) Reaction of naphthalene dianions with tetrahydrofuran and ethylene. J Org Chem 37:4469–4471

    Article  CAS  Google Scholar 

  34. Scott N, Walker J, Hansley V (1936) Sodium naphthalene. I. A new method for the preparation of addition compounds of alkali metals and polycyclic aromatic hydrocarbons. J Am Chem Soc 58:2442–2444

    Article  CAS  Google Scholar 

  35. Brooks J, Rhine W, Stucky G (1972) pi.-Groups in ion pair bonding. Stabilization of the dianion of naphthalene by lithium tetramethylethylenediamine. J Am Chem Soc 94:7346–7351

    Article  CAS  Google Scholar 

  36. Cserhegyi A, Chaudhuri J, Franta E, Jagur-Grodzinski J, Szwarc M (1967) Radical-anion reactions in hexamethylphosphorotriamide. J Am Chem Soc 89:7129–7130

    Article  CAS  Google Scholar 

  37. Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Book, California

    Google Scholar 

  38. Holy N (1974) Reactions of the radical anions and dianions of aromatic hydrocarbons. Chem Rev 74:243–277

    Article  CAS  Google Scholar 

  39. Hirota N (1968) Electron paramagnetic resonance studies of ion pairs. Structures and equilibria in alkali metal naphthalenide and anthracenide. J Am Chem Soc 90:3603–3611

    Article  CAS  Google Scholar 

  40. Smid J, Hogen-Esch T (1965) Solvent-Separated Ion Pairs of Carbanions. J Am Chem Soc 87:669–670

    Article  Google Scholar 

  41. Smid J (1965) A stable dianion of naphthalene. J Am Chem Soc 87:655

    Article  CAS  Google Scholar 

  42. Rathman T, Bailey W (2009) Optimization of organolithium reactions. Org Process Res Dev 13:144–151

    Article  CAS  Google Scholar 

  43. Bauer W, Winchester W, von Ragu Schleyer P (1987) Monomeric organolithium compounds in tetrahydrofuran: tert-butyllithium, sec-butyllithium, supermesityllithium, mesityllithium, and phenyllithium. Carbon-lithium coupling constants and the nature of carbon-lithium bonding. Organometallics 6:2371–2379

    Article  CAS  Google Scholar 

  44. Smid J, Hogen-Esch J (1966) Studies of contact and solvent-separated ion pairs of carbanions. I. Effect of temperature, counterion, and solvent. J Am Chem Soc 88:307–318

    Article  Google Scholar 

  45. Garst J, Cole R (1962) Solvent effect on the disproportionation of monosodium tetraphenylethylene. J Am Chem Soc 84:4352–4353

    Article  CAS  Google Scholar 

  46. Garst J, Zabolotny E, Cole R (1964) Disproportionation of monosodium tetraphenylethylene. J Am Chem Soc 86:2257–2261

    Article  CAS  Google Scholar 

  47. Garst J, Zabolotny E (1965) Electron transfer equilibria. IV. Effects of metal ion and temperature on the disproportionation of monoalkali tetraphenylethylenes. J Am Chem Soc 87:495–501

    Article  CAS  Google Scholar 

  48. Slates RV, Szwarc M (1965) Dissociative equilibria in the systems aromatic hydrocarbon[UNK], Na+ ⇄ Radical Anion[UNK] + Na+. J Phys Chem 69:4124–4131

    Article  CAS  Google Scholar 

  49. Pola J, Levin G, Szwarc M (1976) Equilibrium and kinetic studies of disproportionation of sodium tetracenide in benzene. The effect of added tetrahydrofuran. J Phys Chem 80:1690–1692

    Article  CAS  Google Scholar 

  50. Garst JF, Roberts RD, Abels BN (1975) Solvent effects on reactions of sodium naphthalene with hexyl fluoride. J Am Chem Soc 97:4925–4929

    Article  CAS  Google Scholar 

  51. Garst J, Klein R, Walmsley D, Zabolotny E (1965) Ion aggregate spectra and solvent polarity. J Am Chem Soc 87:4080–4084

    Article  CAS  Google Scholar 

  52. Pacifici JD, Garst JF, Janzen EG (1965) An unusual solvent effect on the air oxidation of a stable carbanion. J Am Chem Soc 87:3014–3015

    Article  CAS  Google Scholar 

  53. Szwarc M (1972) Radical anions and carbanions as donors in electron-transfer processes. Acc Chem Res 5:169–176

    Article  CAS  Google Scholar 

  54. Lundgren B, Levin G, Claesson S, Szwarc M (1975) Disproportionation of the lithium salt of tetraphenylethylene radical anions in THF. Equilibrium and kinetic study. J Am Chem Soc 97:262–267

    Article  CAS  Google Scholar 

  55. Levin G, Jagur-Grodzinski J, Szwarc M (1970) Chemistry of radical anions and dianions of diphenylacetylene. J Am Chem Soc 92:2268–2275

    Article  CAS  Google Scholar 

  56. Tobolsky A, Hartley D (1962) Initiation of methyl methacrylate by aromatic radical-anions. J Am Chem Soc 84:1391–1393

    Article  CAS  Google Scholar 

  57. Morton M, Rembaum A, Bostick E (1958) Polymerization of cyclic oxides initiated by electron transfer. J Polym Sci 32:530–532

    Article  CAS  Google Scholar 

  58. Bellas V, Iatrou H, Hadjichristidis N (2000) Controlled anionic polymerization of hexamethylcyclotrisiloxane. Model linear and miktoarm star co- and terpolymers of dimethylsiloxane with styrene and isoprene. Macromolecules 33:6993–6997

    Article  CAS  Google Scholar 

  59. Ninago MD, Satti AJ, Ressia JA, Ciolino AE, Villar MA, Vallés EM (2009) Controlled synthesis of poly(dimethylsiloxane) homopolymers using high-vaccum anionic polymerization techniques. J Polym Sci A Polym Chem 47:4774–4783

  60. Hsieh H, Quirk R (1996). Anionic polymerization: principles and practical applications, Chapter 24. Marcel Dekker, New York, pp 685–710

  61. Hummel DO, Scholl F (1988) Atlas of polymer and plastic analysis, vol 2, Chapter 5. Carl Hanser Verlag, Munich, pp 284–306

Download references

Acknowledgments

We express our gratitude to the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), and the Universidad Nacional del Sur (UNS, Argentina) for their financial support. The authors also wish to thank Dr. Cristian Vitale for the 1H-NMR spectrum and his helpful advices in the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel J. Satti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninago, M.D., Marani, M.L.S., González, V.A. et al. Lithium naphthalenides in non-polar or in low-polarity media: some insights regarding their use as initiators in anionic polymerizations. Polym. Bull. 74, 307–323 (2017). https://doi.org/10.1007/s00289-016-1715-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1715-2

Keywords

Navigation