Skip to main content
Log in

Polystyrene-based blend nanorods with gradient composition distribution

  • Reviews
  • Special Issue · In Honor of the 80th Birthday of Professor WANG Fosong
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The polystyrene-based polymer blends, partially miscible poly(bisphenol A carbonate)/polystyrene (PC/PS) and completely miscible poly(2,6-dimethylphenylene oxide)/polystyrene (PPO/PS), in nanorods with gradient composition distribution were discussed. The polymer blend nanorods were prepared by infiltrating the polymer blends into nanopores of anodic aluminum oxide (AAO) templates via capillary action. Their morphology was investigated by micro-Fourier transform infrared spectroscopy (micro-FTIR) and nano-thermal analysis (nano-TA) with spatial resolution. The composition gradient of polymer blends in the nanopores is governed by the difference of viscosity and miscibility between the two polymers in the blends and the pore diameter. The capillary wetting of porous AAO templates by polymer blends offers a unique method to fabricate functional nanostructured materials with gradient composition distribution for the potential application to nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin CR. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266: 1961–1966

    Article  CAS  Google Scholar 

  2. Steinhart M. Supramolecular organization of polymeric materials in nanoporous hard templates. Adv Polym Sci, 2008, 220: 123–187

    CAS  Google Scholar 

  3. Shin K, Xiang HQ, Moon SI, Kim T, McCarthy TJ, Russell TP. Curving and frustrating flatland. Science, 2004, 306: 76–76

    Article  CAS  Google Scholar 

  4. Xiang HQ, Shin K, Kim T, Moon SI, McCarthy TJ, Russell TP. Block copolymers under cylindrical confinement. Macromolecules, 2004, 37: 5660–5664

    Article  CAS  Google Scholar 

  5. Sun YM, Steinhart M, Zschech D, Adhikari R, Michler GH, Gösele U. Diameter-dependence of the morphology of PS-b-PMMA nanorods confined within ordered porous alumina templates. Macromol Rapid Commun, 2005, 26: 369–375

    Article  Google Scholar 

  6. Dobriyal P, Xiang H, Kazuyuki M, Chen J-T, Jinnai H, Russell TP. Cylindrically confined diblock copolymers. Macromolecules, 2009, 42: 9082–9088

    Article  CAS  Google Scholar 

  7. Woo E, Huh J, Jeong YG, Shin K. From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement. Phys Rev Lett, 2007, 98: 136103

    Article  Google Scholar 

  8. Duran H, Steinhart M, Butt HJ, Floudas G. From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. Nano Lett, 2011, 11: 1671–1675

    Article  CAS  Google Scholar 

  9. Steinhart M, Göring P, Dernaika H, Prabhukaran M, Gösele U, Hempel E, Thurn-Albrecht T. Coherent kinetic control over crystal orientation in macroscopic ensembles of polymer nanorods and nanotubes. Phys Rev Lett, 2006, 97: 027801

    Article  Google Scholar 

  10. Wu H, Wang W, Yang H, Su Z. Crystallization and orientation of syndiotactic polystyrene in nanorods. Macromolecules, 2007, 40: 4244–4249

    Article  CAS  Google Scholar 

  11. Steinhart M, Senz S, Wehrspohn RB, Gösele U, Wendorff JH. Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls. Macromolecules, 2003, 36: 3646–3651

    Article  CAS  Google Scholar 

  12. Shin K, Woo E, Jeong YG, Kim C, Huh J, Kim KW. Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules, 2007, 40: 6617–6623

    Article  CAS  Google Scholar 

  13. Wu H, Wang W, Huang Y, Su Z. Orientation of syndiotactic polystyrene crystallized in cylindrical nanopores. Macromol Rapid Commun, 2009, 30: 194–198

    Article  CAS  Google Scholar 

  14. Wu H, Wang W, Su ZH. Crystallization and orientation of polyethelene in anodic aluminum oxide templates. Acta Polym Sin, 2009, 425–429

  15. Martin J, Mijangos C, Sanz A, Ezquerra TA, Nogales A. Segmental dynamics of semicrystalline poly(vinylidene fluoride) nanorods. Macromolecules, 2009, 42: 5395–5401

    Article  CAS  Google Scholar 

  16. Lutkenhaus JL, McEnnis K, Serghei A, Russell TP. Confinement effects on crystallization and curie transitions of poly(vinylidene fluoride-co-trifluoroethylene). Macromolecules, 2010, 43: 3844–3850

    Article  CAS  Google Scholar 

  17. Shin K, Obukhov S, Chen JT, Huh J, Hwang Y, Mok S, Dobriyal P, Thiyagarajan P, Russell TP. Enhanced mobility of confined polymers. Nat Mater, 2007, 6: 961–965

    Article  CAS  Google Scholar 

  18. Martin J, Krutyeva M, Monkenbusch M, Arbe A, Allgaier J, Radulescu A, Falus P, Maiz J, Mijangos C, Colmenero J, Richter D. Direct observation of confined single chain dynamics by neutron scattering. Phys Rev Lett, 2010, 104: 197801

    Article  CAS  Google Scholar 

  19. Serghei A, Chen D, Lee DH, Russell TP. Segmental dynamics of polymers during capillary flow into nanopores. Soft Matter, 2010, 6: 1111–1113

    Article  CAS  Google Scholar 

  20. Wu H, Wang W, Huang Y, Wang C, Su Z. Polymorphic behavior of syndiotactic polystyrene crystallized in cylindrical nanopores. Macromolecules, 2008, 41: 7755–7758

    Article  CAS  Google Scholar 

  21. Zhang MF, Dobriyal P, Chen JT, Russell TP, Olmo J, Merry A. Wetting transition in cylindrical alumina nanopores with polymer melts. Nano Lett, 2006, 6: 1075–1079

    Article  CAS  Google Scholar 

  22. Wu H, Su Z, Takahara A. Molecular composition distribution of polycarbonate/ polystyrene blends in cylindrical nanopores. Polym J, 2011, 43: 600–605

    Article  CAS  Google Scholar 

  23. Wu H, Su Z, Takahara A. Gradient composition distribution in poly(2,6-dimethylphenylene oxide)/polystyrene blend nanorods. Soft Matter, 2011, 7: 1868–1873

    Article  CAS  Google Scholar 

  24. Martin J, Mijangos C. Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. Langmuir, 2009, 25: 1181–1187

    Article  CAS  Google Scholar 

  25. Garcia-Gutierrez MC, Linares A, Hernandez JJ, Rueda DR, Ezquerra TA, Poza P, Davies RJ. Confinement-induced one-dimensional ferroelectric polymer arrays. Nano Lett, 2010, 10: 1472–1476

    Article  CAS  Google Scholar 

  26. Chen D, Chen JT, Glogowski E, Emrick T, Russell TP. Thin film instabilities in blends under cylindrical confinement. Macromol Rapid Commun, 2009, 30: 377–383

    Article  Google Scholar 

  27. Ai SF, Lu G, He Q, Li JB. Highly flexible polyelectrolyte nanotubes. J Am Chem Soc, 2003, 125: 11140–11141

    Article  CAS  Google Scholar 

  28. Azzaroni O, Lau KHA. Layer-by-layer assemblies in nanoporous templates: nano-organized design and applications of soft nanotechnology. Soft Matter, 2011, 7: 8709–8724

    Article  CAS  Google Scholar 

  29. Cepak VM, Martin CR. Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chem Mater, 1999, 11: 1363–1367

    Article  CAS  Google Scholar 

  30. Zheng RK, Chan HLW, Choy CL. A simple template-based hot-press method for the fabrication of metal and polymer nanowires and nanotubes. Nanotechnology, 2005, 16: 1928–1934

    Article  CAS  Google Scholar 

  31. Kimura T, Kobayashi M, Morita M, Takahara A. Preparation of poly(vinylidene fluoride-co-trifluoroethylene) film with a hydrophilic surface by direct surface-initiated atom transfer radical polymerization without pretreatment. Chem Lett, 2009, 38: 446–447

    Article  CAS  Google Scholar 

  32. Quiram DJ, Register RA, Marchand GR, Adamson DH. Chain orientation in block copolymers exhibiting cylindrically confined crystallization. Macromolecules, 1998, 31: 4891–4898

    Article  CAS  Google Scholar 

  33. Huang P, Zhu L, Cheng SZD, Ge Q, Quirk RP, Thomas EL, Lotz B, Hsiao BS, Liu LZ, Yeh FJ. Crystal orientation changes in two-dimensionally confined nanocylinders in a poly(ethylene oxide)-b-polystyrene/polystyrene blend. Macromolecules, 2001, 34: 6649–6657

    Article  CAS  Google Scholar 

  34. Sun L, Zhu L, Ge Q, Quirk RP, Xue CC, Cheng SZD, Hsiao BS, Avila-Orta CA, Sics I, Cantino ME. Comparison of crystallization kinetics in various nanoconfined geometries. Polymer, 2004, 45: 2931–2939

    Article  CAS  Google Scholar 

  35. Huang P, Guo Y, Quirk RP, Ruan JJ, Lotz B, Thomas EL, Hsiao BS, Avila-Orta CA, Sics I, Cheng SZD. Comparison of poly(ethylene oxide) crystal orientations and crystallization behaviors in nano-confined cylinders constructed by a poly(ethylene oxide)-b-polystyrene diblock copolymer and a blend of poly(ethylene oxide)-b-polystyrene and polystyrene. Polymer, 2006, 47: 5457–5466

    Article  CAS  Google Scholar 

  36. Nojima S, Ohguma Y, Kadena K, Ishizone T, Iwasaki Y, Yamaguchi K. Crystal orientation of poly(ɛ-caprolactone) homopolymers confined in cylindrical nanodomains. Macromolecules, 2010, 43: 3916–3923

    Article  CAS  Google Scholar 

  37. Chung TM, Wang TC, Ho RM, Sun YS, Ko BT. Polymeric crystallization under nanoscale 2d spatial confinement. Macromolecules, 2010, 43: 6237–6240

    Article  CAS  Google Scholar 

  38. Li D, Xia YN. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater, 2004, 16: 1151–1170

    Article  CAS  Google Scholar 

  39. Liu Y, Cui L, Guan FX, Gao Y, Hedin NE, Zhu L, Fong H. Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules, 2007, 40: 6283–6290

    Article  CAS  Google Scholar 

  40. Zhang CF, Liu YH, Liu SX, Li HZ, Huang K, Pan QH, Hua XH, Hao CW, Ma QF, Lv CY, Li WH, Yang ZL, Zhao Y, Wang DJ, Lai GQ, Jiang JX, Xu YZ, Wu JG. Crystalline behaviors and phase transition during the manufacture of fine denier PA6 fibers. Sci China Chem, 2009, 52: 1835–1842

    Article  CAS  Google Scholar 

  41. Yano T, Yah WO, Yamaguchi H, Terayama Y, Nishihara M, Kobayashi M, Takahara A. Preparation and surface characterization of surface-modified electrospun poly(methyl methacrylate) copolymer nanofibers. Chem Lett, 2010, 39: 1110–1111

    Article  CAS  Google Scholar 

  42. Zhang H, Zhao CG, Zhao YH, Tang GW, Yuan XY. Electrospinning of ultrafine core/shell fibers for biomedical applications. Sci China Chem, 2010, 53: 1246–1254

    Article  CAS  Google Scholar 

  43. Suh KY, Kim YS, Lee HH. Capillary force lithography. Adv Mater, 2001, 13: 1386–1389

    Article  CAS  Google Scholar 

  44. Hu ZJ, Jonas AM. Control of crystal orientation in soft nanostructures by nanoimprint lithography. Soft Matter, 2010, 6: 21–28

    Article  CAS  Google Scholar 

  45. Honda K, Morita M, Masunaga H, Sasaki S, Takata M, Takahara A. Room-temperature nanoimprint lithography for crystalline poly (fluoroalkyl acrylate) thin films. Soft Matter, 2010, 6: 870–875

    Article  CAS  Google Scholar 

  46. He XH, Song M, Liang HJ, Pan CY. Self-assembly of the symmetric diblock copolymer in a confined state: Monte Carlo simulation. J Chem Phys, 2001, 114: 10510–10513

    Article  CAS  Google Scholar 

  47. Li WH, Wickham RA, Garbary RA. Phase diagram for a diblock copolymer melt under cylindrical confinement. Macromolecules, 2006, 39: 806–811

    Article  CAS  Google Scholar 

  48. Zhu YT, Jiang W. Self-assembly of diblock copolymer mixtures in confined states: a Monte Carlo study. Macromolecules, 2007, 40: 2872–2881

    Article  CAS  Google Scholar 

  49. Yu B, Li BH, Jin QH, Ding DT, Shi AC. Confined self-assembly of cylinder-forming diblock copolymers: Effects of confining geometries. Soft Matter, 2011, 7: 10227–10240

    Article  CAS  Google Scholar 

  50. Ma Y, Hu WB, Hobbs J, Reiter G. Understanding crystal orientation in quasi-one-dimensional polymer systems. Soft Matter, 2008, 4: 540–543

    Article  CAS  Google Scholar 

  51. Xiao XQ, Huang YM, Feng JA, Liu HL, Hu Y. Microphase separation of a diblock copolymer dispersed in nanorod arrays grafted on a plate: a Monte Carlo study. Macromol Theory Simul, 2011, 20: 124–132

    Article  CAS  Google Scholar 

  52. Utracki LA. Polymer Alloys and Blends. New York: Hanser Publ., 1989

    Google Scholar 

  53. Agari Y, Shimada M, Ueda A, Nagai S. Preparation, characterization and properties of gradient polymer blends: discussion of poly(vinyl chloride)/poly(methyl methacrylate) blend films containing a wide compositional gradient phase. Macromol Chem Phys, 1996, 197: 2017–2033

    Article  CAS  Google Scholar 

  54. Patterson D, Robard A. Thermodynamics of polymer compatibility. Macromolecules, 1978, 11: 690–695

    Article  CAS  Google Scholar 

  55. Kim WN, Burns CM. Thermal-behavior, morphology, and the determination of the Flory-Huggins interaction parameter of polycarbonate polystyrene blends. J Appl Polym Sci, 1987, 34: 945–967

    Article  CAS  Google Scholar 

  56. Fekete E, Foldes E, Damsits F, Pukanszky B. Interaction-structure-property relationships in amorphous polymer blends. Polym Bull, 2000, 44: 363–370

    Article  CAS  Google Scholar 

  57. Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 268: 1466–1468

    Article  CAS  Google Scholar 

  58. Li AP, Muller F, Birner A, Nielsch K, Gösele U. Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J Appl Phys, 1998, 84: 6023–6026

    Article  CAS  Google Scholar 

  59. Lee SN, Stolarski V, Letton A, Laane J. Studies of bisphenol-A-polycarbonate aging by Raman difference spectroscopy. J Mol Struct, 2000, 521: 19–23

    Article  CAS  Google Scholar 

  60. Liang CY, Krimm S. Infrared spectra of high polymers. VI. Polystyrene. J Polym Sci, 1958, 27: 241–254

    Article  CAS  Google Scholar 

  61. Kong XM, Xie XM, Yang R, Wang KH, Zhang ZM, Lei H. Determination of the composition distribution of polymer blend films by using microscopic FTIR. Spectrosc Spect Anal, 2000, 20: 623–625

    CAS  Google Scholar 

  62. Nakashima K, Ren Y, Nishioka T, Tsubahara N, Noda I, Ozaki Y. Two-dimensional infrared correlation spectroscopy studies of polymer blends: conformational changes and specific interactions in blends of atactic polystyrene and poly(2,6-dimethyl-1,4-phenylene ether). J Phys Chem B, 1999, 103: 6704–6712

    Article  CAS  Google Scholar 

  63. Wellinghoff ST, Koenig JL, Baer E. Spectroscopic examination of chain conformation and bonding in poly(phenylene oxide)-polysty-rene blends. J Polym Sci, Part B: Polym Phys, 1977, 15: 1913–1925

    CAS  Google Scholar 

  64. Yang FZ, Wornyo E, Gall K, King WP. Thermomechanical formation and recovery of nanoindents in a shape memory polymer studied using a heated tip. Scanning, 2008, 30: 197–202

    Article  CAS  Google Scholar 

  65. Maruf SH, Ahn DU, Greenberg AR, Ding Y. Glass transition behaviors of interfacially polymerized polyamide barrier layers on thin film composite membranes via nano-thermal analysis. Polymer, 2011, 52: 2643–2649

    Article  CAS  Google Scholar 

  66. Zhu S, Liu Y, Rafailovich MH, Sokolov J, Gersappe D, Winesett DA, Ade H. Confinement-induced miscibility in polymer blends. Nature, 1999, 400: 49–51

    Article  CAS  Google Scholar 

  67. Liu CY, Zhang BQ, He JS, Keunings R, Bailly C. Confinement effects on chain and glass dynamics in immiscible polymer blends. Macromolecules, 2009, 42: 7982–7985

    Article  CAS  Google Scholar 

  68. Lomellini P. Viscosity-temperature relationships of a polycarbonate melt: williams-landel-ferry versus arrhenius behavior. Makromol Chem, 1992, 193: 69–79

    Article  CAS  Google Scholar 

  69. Fox TG, Flory PJ. The glass temperature and related properties of polystyrene. Influence of molecular weight. J Polym Sci, 1954, 14: 315–319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Su, Z., Terayama, Y. et al. Polystyrene-based blend nanorods with gradient composition distribution. Sci. China Chem. 55, 726–734 (2012). https://doi.org/10.1007/s11426-012-4501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4501-5

Keywords

Navigation