Skip to main content
Log in

Organic thin-film solar cells: Devices and materials

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In recent years, the performance of organic thin-film solar cells has gained rapid progress, of which the power conversion efficiencies (η p) of 3%–5% are commonly achieved, which were difficult to obtain years ago and are improving steadily now. The η p of 7.4% was achieved in the year 2010, and η p of 9.2% was disclosed and confirmed at website of Mitsubishi Chemical in April, 2011. The promising future is that the η p of 10% is achievable according to simulation results. Apparently, these are attributed to material innovations, new device structures, and also the better understanding of device physics. This article summarizes recent progress in organic thin-film solar cells related to materials, device structures and working principles. In the device functioning part, after each brief summary of the working principle, the methods for improvements, such as absorption increment, organic/electrode interface engineering, morphological issues, are addressed and summarized accordingly. In addition, for the purpose of increasing exciton diffusion efficiency, the benefit from triplet exciton, which has been proposed in recent years, is highlighted. In the active material parts, the chemical nature of materials and its impact on device performance are discussed. Particularly, emphasis is given toward the insight for better understanding device physics as well as improvements in device performance either by development of new materials or by new device architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapin DM, Fuller CS, Pearson GL. A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys, 1954, 25: 676–677

    CAS  Google Scholar 

  2. Prince MB. Silicon solar energy converters. J Appl Phys, 1955, 26: 534–540

    Google Scholar 

  3. Chung BC, Virshup GF, Hikido S, Kaminar NR. 27.6% efficiency (1 sun, air mass 1.5) monolithic Al0.37Ga0.63As/GaAs two-junction cascade solar cell with prismatic cover glass. Appl Phys Lett, 1989, 55: 1741–1743

    CAS  Google Scholar 

  4. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Google Scholar 

  5. Grätzel M. Photoelectrochemical cells. Nature, 2001, 414: 338–344

    Google Scholar 

  6. Kallmann H, Pope M. Photovoltaic effect in organic crystals. J Chem Phys, 1959, 30: 585–586

    CAS  Google Scholar 

  7. Tang CW. Two-layer organic photovoltaic cell. Appl Phys Lett, 1986, 48: 183–185

    CAS  Google Scholar 

  8. Sariciftci NS, Smilowitz L, Heeger A J, Wudl F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258: 1474–1476

    CAS  Google Scholar 

  9. Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F. Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Appl Phys Lett, 1993, 62: 585–587

    CAS  Google Scholar 

  10. Morita S, Zakhidov AA, Yoshino K. Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescene. Solid State Commun, 1992, 82: 249–252

    CAS  Google Scholar 

  11. Gevaent M, Kamat PV. Photochemistry of fullerenes: Excited-state behavior of C60 and C70 and their reduction in poly(methyl methacrylate) films. J Phys Chem, 1992, 96: 9883–9888

    Google Scholar 

  12. Lee K, Janssen RAJ, Sariciftci NS, Heeger AJ. Direct evidence of photoinduced electron transfer in conducting-polymer-C60 composites by infrared photoexcitation spectroscopy. Phys Rev B, 1994, 49: 5781–5784

    CAS  Google Scholar 

  13. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789–1791

    CAS  Google Scholar 

  14. Xue J, Uchida S, Rand BP, Forrest SR. 4.2% Efficient organic photovoltaic cells with low series resistances. Appl Phys Lett, 2004, 84: 3013–3015

    CAS  Google Scholar 

  15. Peumans P, Bulovi V, Forrest SR. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett, 2000, 76: 2650–2652

    CAS  Google Scholar 

  16. Gregg BA. Bilayer molecular solar cells on spin-coated TiO2 substrates. Chem Phys Lett, 1996, 258: 376–380

    CAS  Google Scholar 

  17. Granstrom M, Petritsch K, Arias AC, Lux A, Andersson MR, Friend RH. Laminated fabrication of polymeric photovoltaic diodes. Nature, 1998, 395: 257–260

    CAS  Google Scholar 

  18. Brabec CJ, Sariciftci NS, Hummelen JC. Plastic solar cells. Adv Funct Mater, 2001, 11: 15–26

    CAS  Google Scholar 

  19. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC. 2.5% Efficient organic plastic solar cells. Appl Phys Lett, 2001, 78: 841–843

    CAS  Google Scholar 

  20. Svensson M, Zhang F, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganäs O, Andersson MR. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv Mater, 2003, 15: 988–991

    CAS  Google Scholar 

  21. Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, Janssen RAJ. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed, 2003, 42: 3371–3375

    CAS  Google Scholar 

  22. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB. Efficient photodiodes from interpenetrating polymer networks. Nature, 1995, 376: 498–500

    CAS  Google Scholar 

  23. Peumans P, Uchida S, Forrest SR. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature, 2003, 425: 158–162

    CAS  Google Scholar 

  24. Hiramoto M, Fujiwara H, Yokoyama M. Three-ayered organic solar cell with a photoactive interlayer of codeposited pigments. Appl Phys Lett, 1991, 58: 1062–1064

    CAS  Google Scholar 

  25. Maennig B, Drechsel J, Gebeyehu D, Simonm P, Kozlowski F, Werner A, Li F, Grundmann S, Sonntag S, Koch M, Leo K, Pfeiffer M, Hoppe H, Meissner D, Sariciftci NS, Riedel I, Dyakonov V, Parisi J. Organic p-i-n solar cells. Appl Phys A, 2004, 79: 1–14

    CAS  Google Scholar 

  26. Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl Phys Lett, 2001, 79: 2085–2087

    Google Scholar 

  27. Huynh WU, Dittmer JJ, Alivisatos AP. Hybrid nanorod-polymer solar cells. Science, 2002, 295: 2425–2427

    CAS  Google Scholar 

  28. Ma H, Yip H-L, Huang F, Jen A-Y. Interface engineering for organic electronics. Adv Funct Mater, 2010, 20: 1371–1388

    CAS  Google Scholar 

  29. Kirchartz T, Pieters BE, Taretto K, Rau U. Electro-optical modeling of bulk heterojunction solar cells. J Appl Phys, 2008, 104: 094513-1–094513-9

    Google Scholar 

  30. Zhao XY, Mi BX, Gao ZQ, Huang W, Recent progress in the numerical modeling for organic thin film solar cells. Sci China Phys Mech Astron, 2011, 54: 375–387

    CAS  Google Scholar 

  31. Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ. New architecture for high-efficiency polymer photovoltaic cells using solution-based Titanium oxide as an optical spacer. Adv Mater, 2006, 18: 572–576

    CAS  Google Scholar 

  32. Reyes-Reyes M, Kim K, Carroll DL. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl Phys Lett, 2005, 87: 083506-1–083506-3

    Google Scholar 

  33. Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L. For the bright future — Bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22: E135–E138

    CAS  Google Scholar 

  34. Koster LJA, Mihailetchi VD, Blom PWM. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett, 2006, 88: 093511-1–093511-3

    Google Scholar 

  35. Rand BP, Burk DP, Forrest SR. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys Rev B, 2007, 75: 115327-1–115327-11

    Google Scholar 

  36. Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107: 1324–1338

    Google Scholar 

  37. Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev, 2009, 109: 5868–5923

    CAS  Google Scholar 

  38. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE. Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv Mater, 2007, 19: 1551–1566

    CAS  Google Scholar 

  39. Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater, 2009, 21: 1323–1338

    CAS  Google Scholar 

  40. Thompson BC, Fréchet JMJ. Polymer-fullerene composite solar cells. Angew Chem Int Ed, 2008, 47: 58–77

    CAS  Google Scholar 

  41. Peet J, Heeger AJ, Bazan GC. “Plastic” solar cells: Self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res, 2009, 42: 1700–1708

    CAS  Google Scholar 

  42. Chen LM, Hong Z, Li G, Yang Y. Recent progress in polymer solar cells: Manipulation of polymer: Fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater, 2009, 21: 1434–1449

    CAS  Google Scholar 

  43. Moulé AJ, Meerholz K. Morphology control in solution-processed bulk-heterojunction solar cell mixtures. Adv Funct Mater, 2009, 19: 3028–3036

    Google Scholar 

  44. Cai W, Gong X, Cao Y. Polymer solar cells: Recent development and possible routes for improvement in the performance. Sol Energy Mater Sol Cells, 2010, 94: 114–127

    CAS  Google Scholar 

  45. Jiang H, Deng X, Huang W. Bulk heterojunction solar cell based on fullerene and polythiophene. Prog Chem, 2008, 20: 1361–1374

    CAS  Google Scholar 

  46. Chen J, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    CAS  Google Scholar 

  47. Li Y, Zou Y. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv Mater, 2008, 20: 2952–2958

    CAS  Google Scholar 

  48. Segura JL, Martín N, Guldi DM. Materials for organic solar cells: The C60/-conjugated oligomer approach. Chem Soc Rev, 2005, 34: 31–47

    CAS  Google Scholar 

  49. Peumans P, Yakimov A, Forrest SR. Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys, 2003, 93: 3693–3723

    CAS  Google Scholar 

  50. Zang H, Xu Z, Hu B. Magneto-optical investigations on the formation and dissociation of intermolecular charge-transfer complexes at donor-acceptor interfaces in bulk-heterojunction organic solar cells. J Phys Chem B, 2010, 114: 5704–5709

    CAS  Google Scholar 

  51. Zhu X-Y, Yang Q, Muntwiler M. Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc Chem Res, 2009, 42: 1779–1787

    CAS  Google Scholar 

  52. Brédas J-L, Norton JE, Cornil J, Coropceanu V. Molecular understanding of organic solar cells: The challenges. Acc Chem Res, 2009, 42: 1691–1699

    Google Scholar 

  53. Heremans P, Cheyns D, Rand BP. Strategies for increasing the efficiency of heterojunction organic solar cells: Material selection and device architecture. Acc Chem Res, 2009, 42, 1740–1747

    CAS  Google Scholar 

  54. Mi B-X, Gao Z-Q, Deng X-Y, Huang W. Progress in organic thin film solar cell materials and devices (in Chinese). Sci China B Chem, 2008, 38: 957–975

    Google Scholar 

  55. Hoppe H, Sariciftci NS. Organic solar cells: An overview. J Mater Res, 2004, 19: 1924–1945

    CAS  Google Scholar 

  56. Chang Y-T, Hsu S-L, Su M-H, Wei K-H. Soluble phenanthrenyl-imidazole-presenting regioregular poly(3-octylthiophene) copolymers having tunable bandgaps for solar cell applications. Adv Funct Mater, 2007, 17: 3326–3331

    CAS  Google Scholar 

  57. Bundgaard E, Krebs FC. Large-area photovoltaics based on low band gap copolymers of thiophene and benzothiadiazole or benzo-bis(thiadiazole). Sol Energy Mater Sol Cells, 2007, 91: 1019–1025

    CAS  Google Scholar 

  58. Belcher W J, Wagner K I, Dastoor PC. The effect of porphyrin inclusion on the spectral response of ternary P3HT:porphyrin:PCBM bulk heterojunction solar cells. Sol Energy Mater Sol Cells, 2007, 91: 447–452

    CAS  Google Scholar 

  59. Roncali J. Molecular engineering of the band gap of π-conjugated systems: Facing technological applications. Macromol Rapid Commun, 2007, 28: 1761–1775

    CAS  Google Scholar 

  60. Zhou Q, Hou Q, Zheng L, Deng X, Yu G, Cao Y. Fuorene-based low band-gap copolymers for high performance photovoltaic devices. Appl Phys Lett, 2004, 84: 1653–1655

    CAS  Google Scholar 

  61. Wong W-Y, Wang X-Z, He Z, Chan K-K, Djurišić AB, Cheung K-Y, Yip C-T, Ng AM-C, Xi YY, Mak CSK, Chan W-K. Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in Platinum-containing poly(aryleneethynylene)s. J Am Chem Soc, 2007, 129: 14372–14380

    CAS  Google Scholar 

  62. Zhou Y, Peng P, Han L, Tian W. Novel donor-acceptor molecules as donors for bulk heterojunction solar cells. Synth Met, 2007, 157: 502–507

    CAS  Google Scholar 

  63. Koeppe R, Sariciftci NS, Büchtemann A. Enhancing photon harvesting in organic solar cells with luminescent concentrators. Appl Phys Lett, 2007, 90: 181126-1–181126-3

    Google Scholar 

  64. Wong HL, Mak CSK, Chan WK, Djurišić AB. Efficient photovoltaic cells with wide photosensitization range fabricated from rhenium benzathiazole complexes. Appl Phys Lett, 2007, 90: 081107-1–081107-3

    Google Scholar 

  65. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ. Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007, 317: 222–225

    CAS  Google Scholar 

  66. Xu Z, Hu B. Photovoltaic processes of singlet and triplet excited states in organic solar cells. Adv Funct Mater, 2008, 18: 2611–2617

    CAS  Google Scholar 

  67. Shao Y, Yang Y. Efficient organic heterojunction photovoltaic cells based on triplet materials. Adv Mater, 2005, 17: 2841–2844

    CAS  Google Scholar 

  68. Yang C-M, Wu C-H, Liao H-H, Lai K-Y, Cheng H-P, Horng S-F, Meng H-F, Shy J-T. Enhanced photovoltaic response of organic solar cell by singlet-to-triplet exciton conversion. Appl Phys Lett, 2007, 90: 133509-1–133509-3

    Google Scholar 

  69. Lee C-L, Hwang I-W, Byeon CC, Kim BH, Greenham NC. Triplet exciton and polaron dynamics in phosphorescent dye blended polymer photovoltaic devices. Adv Funct Mater, 2010, 20: 2945–2950

    CAS  Google Scholar 

  70. Barth S, Bässler H. Intrinsic photoconduction in PPV-type conjugated polymers. Phys Rev Lett, 1997, 79: 4445–4448

    CAS  Google Scholar 

  71. Marks RN, Halls JJM, Bradley DDC, Friend RH, Holmes AB. The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. J Phys Condens Matter, 1994, 6: 1379–1394

    CAS  Google Scholar 

  72. Li WB, Song QL, Sun XY, Wang ML, Wu HR, Ding XM, Hou XY. Interfacial processes in small molecule organic solar cells. Sci China Phys Mech Astron, 2010, 53: 288–300

    CAS  Google Scholar 

  73. Yang F, Shtein M, Forrest SR. Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nature Mater, 2005, 4: 37–41

    Google Scholar 

  74. Martini IB, Ma B, Ros TD, Helgeson R, Wudl F, Schwartz BJ. Ultrafast competition between energy and charge transfer in a functionalized electron donor/fullerene derivative. Chem Phys Lett, 2000, 327: 253–262

    CAS  Google Scholar 

  75. Eckert J-F, Nicoud J-F, Nierengarten J-F, Liu S-G, Echegoyen L, Barigelletti F, Armaroli N, Ouali L, Krasnikov V, Hadziioannou G. Fullerene-oligophenylenevinylene hybrids: Synthesis, electronic properties, and incorporation in photovoltaic devices. J Am Chem Soc, 2000, 122: 7467–7479

    CAS  Google Scholar 

  76. Peeters E, van Hal PA, Knol J, Brabec CJ, Sariciftci NS, Hummelen JC, Janssen RAJ. Synthesis, photophysical properties, and photovoltaic devices of oligo(p-phenylene vinylene)-fullerene dyads. J Phys Chem B, 2000, 104: 10174–10190

    CAS  Google Scholar 

  77. Hung LS, Tang CW, Mason MG. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl Phys Lett, 1997, 70: 152–154

    CAS  Google Scholar 

  78. Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P. Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett, 2002, 80: 1288–1290

    CAS  Google Scholar 

  79. Wen FS, Li WL, Liu Z, Wei HZ. Effect of electrode modification on organic photovoltaic devices. Mater Chem Phys, 2006, 95: 94–98

    CAS  Google Scholar 

  80. Ahlswede E, Hanisch J, Powall M. Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells. Appl Phys Lett, 2007, 90: 163504-1–163504-3

    Google Scholar 

  81. Vogel M, Doka S, Breyer C, Lux-Steiner MC, Fostiropoulos K. On the function of a bathocuproine buffer layer in organic photovoltaic cells. Appl Phys Lett, 2006, 89: 163501-1–163501-3

    Google Scholar 

  82. Wu HR, Song QL, Wang ML, Li FY, Yang H, Wu Y, Huang CH, Ding XM, Hou XY. Stable small-molecule organic solar cells with 1,3,5-tris(2-N-phenylbenzimidazolyl) benzene as an organic buffer. Thin Solid Films, 2007, 515: 8050–8053

    CAS  Google Scholar 

  83. Rand BP, Li J, Xue J, Holmes RJ, Thompson M E, Forrest SR. Organic double-heterostructure photovoltaic cells employing thick tris(acetylacetonato)ruthenium(iii) exciton-blocking layers. Adv Mater, 2005, 17: 2714–2718

    CAS  Google Scholar 

  84. Song QL, Li CM, Wang ML, Sun XY, Hou XY. Role of buffer in organic solar cells using C60 as an acceptor. Appl Phys Lett, 2007, 90: 071109-1–071109-3

    Google Scholar 

  85. Morsli M, Berredjem Y, Drici A, Kouskoussa B, Boulmokh A, Bernède JC. Influence of Alq3 and/or Al2O3 layers at the C60/aluminum interface on the I-V characteristics of CuPc/C60-based solar cells. Phys Status Solidi A, 2008, 205: 1226–1232

    CAS  Google Scholar 

  86. Zhang F, Ceder M, Inganäs O. Enhancing the photovoltage of polymer solar cells by using a modified cathode. Adv Mater, 2007, 19: 1835–1838

    CAS  Google Scholar 

  87. Hayakawa A, Yoshikawa O, Fujieda T, Uehara K, Yoshikawa S. High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer. Appl Phys Lett, 2007, 90: 163517-1–163517-3

    Google Scholar 

  88. He Z, Zhang C, Xu X, Zhang L, Huang L, Chen J, Wu H, Cao Y. Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor. Adv Mater, 2011, 23: 3086–3089

    CAS  Google Scholar 

  89. Wu CC, Wu CI, Sturm JC, Kahn A. Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. Appl Phys Lett, 1997, 70: 1348–1350

    CAS  Google Scholar 

  90. Sugiyama K, Ishii H, Ouchi Y, Seki K. Dependence of indiumtin-oxide work function on surface cleaning method as studied by ultraviolet and X-ray photoemission spectroscopies. J Appl Phys, 2000, 87: 295–298

    CAS  Google Scholar 

  91. Ko C-J, Lin Y-K, Chen F-C, Chu C-W. Modified buffer layers for polymer photovoltaic devices. Appl Phys Lett, 2007, 90: 063509-1–063509-3

    Google Scholar 

  92. Kim JS, Park JH, Lee JH, Jo J, Kim D-Y, Cho K. Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics. Appl Phys Lett, 2007, 91: 112111-1–112111-3

    Google Scholar 

  93. Shrotriya V, Li G, Yao Y, Chu C-W, Yang Y. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl Phys Lett, 2006, 88: 073508-1–073508-3

    Google Scholar 

  94. Tong SW, Zhang CF, Jiang CY, Liu G, Ling QD, Kang ET, Chan DSH, Zhu C. Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer. Chem Phys Lett, 2008, 453: 73–76

    CAS  Google Scholar 

  95. Kouskoussa B, Morsli M, Benchouk K, Louarn G, Cattin L, Khelil A, Bernède JC. On the improvement of the anode/organic material interface in organic solar cells by the presence of an ultra-thin gold layer. Phys Status Solidi A, 2009, 206: 311–315

    CAS  Google Scholar 

  96. de Jong MP, van Ijzendoorn LJ, de Voigt MJA. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythio-phene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl Phys Lett, 2000, 77: 2255–2257

    Google Scholar 

  97. Wong KW, Yip HL, Luo Y, Wong KY, Lau WM, Low KH, Chow HF, Gao ZQ, Yeung WL, Chang CC. Blocking reactions between indium-tin oxide and poly(3,4-ethylene dioxythiophene): Poly(styrene sulphonate) with a self-assembly monolayer. Appl Phys Lett, 2002, 80: 2788–2790

    CAS  Google Scholar 

  98. Vitoratos E, Sakkopoulos S, Dalas E, Paliatsas N, Karageorgopoulos D, Petraki F, Kennou S, Choulis SA. Thermal degradation mechanisms of PEDOT:PSS. Org Electron, 2009, 10: 61–66

    CAS  Google Scholar 

  99. Qiao Q, Xie Y, McLeskey JT. Organic/inorganic polymer solar cells using a buffer layer from all-water-solution processing. J Phys Chem C, 2008, 112: 9912–9916

    CAS  Google Scholar 

  100. Hains AW, Liu J, Martinson ABF, Irwin MD, Marks TJ. Anode interfacial tuning via electron-blocking/hole-transport layers and indium tin oxide surface treatment in bulk-heterojunction organic photovoltaic cells. Adv Funct Mater, 2010, 20: 595–606

    CAS  Google Scholar 

  101. Wang Y, Hua Y, Wu X, Zhang L, Hou Q, Zhang N, Ma L, Cheng X, Yin S. Fluoropolymer indium-tin-oxide buffer layers for improved power conversion in organic photovoltaics. Appl Phys Lett, 2008, 93: 133302-1–133302-3

    Google Scholar 

  102. Zhang B, Lee D-H, Chae H, Park C, Cho SM. Optimization of inverted bulk heterojunction polymer solar cells. Korean J Chem Eng, 2010, 27(3): 999–1002

    Google Scholar 

  103. Cheng Y-J, Hsieh C-H, He Y, Hsu C-S, Li Y. Combination of in dene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J Am Chem Soc, 2010, 132: 17381–17383

    CAS  Google Scholar 

  104. Dong Q, Zhou Y, Pei J, Liu Z, Li Y, Yao S, Zhang J, Tian W. All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer. Org Electron, 2010, 11: 1327–1331

    CAS  Google Scholar 

  105. Hoppe H, Sariciftci NS. Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem, 2006, 16: 45–61

    CAS  Google Scholar 

  106. Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ. Nanoscale morphology of high-performance polymer solar cells. Nano Lett, 2005, 5: 579–583

    CAS  Google Scholar 

  107. Yang X, Loos J. Toward high-performance polymer solar cells: The importance of morphology control. Macromolecules, 2007, 40: 1353–1362

    CAS  Google Scholar 

  108. Zhang F, Jespersen KG, Björström C, Svensson M, Andersson M R, Sundström V, Magnusson K, Moons E, Yartsev A, Inganäs O. Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Adv Funct Mater, 2006, 16: 667–674

    CAS  Google Scholar 

  109. Dittmer JJ, Marseglia EA, Friend RH. Electron trapping in dye/polymer blend photovoltaic cells. Adv Mater, 2000, 12: 1270–1274

    CAS  Google Scholar 

  110. Camaioni N, Ridolfi G, Casalbore-Miceli G, Possamai G, Maggini M. The effect of a mild thermal treatment on the performance of poly(3-alkylthiophene)/fullerene solar cells. Adv Mater, 2002, 14: 1735–1738

    CAS  Google Scholar 

  111. Li G, Shrotriya V, Yao Y, Yang Y. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys, 2005, 98: 043704-1–043704-5

    Google Scholar 

  112. Ma W, Yang G, Gong X, Lee K, Heeger AJ. Thermally stable efficienct polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater, 2005, 15: 1617–1622

    CAS  Google Scholar 

  113. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater, 2005, 4: 864–868

    CAS  Google Scholar 

  114. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater, 2007, 17: 1636–1644

    Google Scholar 

  115. Chu C-W, Yang H, Hou W-J, Huang J, Li G, Yang Y. Control of the nanoscale crystallinity and phase separation in polymer solar cells. Appl Phys Lett, 2008, 92: 103306-1–103306-3

    Google Scholar 

  116. Berson S, De Bettignies R, Bailly S, Guillerez S. Poly(3-hexylthiophene) fibers for photovoltaic applications. Adv Funct Mater, 2007, 17: 1377–1384

    CAS  Google Scholar 

  117. Lieber CM, Zhang ZJ. Synthesis of covalent carbon-nitride solids: Alternatives to diamond? Adv Mater, 1994, 6: 497–499

    CAS  Google Scholar 

  118. Moulé AJ, Meerholz K. Controlling morphology in polymer-fullerene mixtures. Adv Mater, 2008, 20: 240–245

    Google Scholar 

  119. Zhao Y, Shao S, Xie Z, Geng Y, Wang L. Effect of poly (3-hexylthiophene) nanofibrils on charge separation and transport in polymer bulk heterojunction photovoltaic cells. J Phys Chem C, 2009, 113: 17235–17239

    CAS  Google Scholar 

  120. Liu J, Shao S, Wang H, Zhao K, Xue L, Gao X, Xie Z, Han Y. The mechanisms for introduction of n-dodecylthiol to modify the P3HT/PCBM morphology. Org Electron, 2010, 11: 775–783

    CAS  Google Scholar 

  121. Wang W, Wu H, Yang C, Luo C, Zhang Y, Chen J, Cao Y. High-efficiency polymer photovoltaic devices from regioregular poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester processed with oleic acid surfactant. Appl Phys Lett, 2007, 90: 183512-1–183512-3

    Google Scholar 

  122. Kim CS, Tinker LL, DiSalle BF, Gomez ED, Lee S, Bernhard S, Loo Y-L. Altering the thermodynamics of phase separation in inverted bulk-heterojunction organic solar cells. Adv Mater, 2009, 21: 3110–3115

    CAS  Google Scholar 

  123. Hoppe SH, Sariciftci NS. Polymer solar cells. Adv Polym Sci, 2008, 214: 1–86

    CAS  Google Scholar 

  124. Cravino A, Sariciftci N S. Organic electronics: Molecules as bipolar conductors. Nature Mater, 2003, 2: 360–361

    CAS  Google Scholar 

  125. He Y, Li Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys, 2011, 13: 1970–1983

    CAS  Google Scholar 

  126. Allemand P M, Koch A, Wudl F, Rubin Y, Diederich F, Alvarez M M, Anz S J, Whetten R L. Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc, 1991, 113: 1050–1051

    CAS  Google Scholar 

  127. Capozzi V, Casamassima G, Lorusso GF, Minafra A, Piccolo R, Trovato T, Valentini A. Optical spectra and photoluminescence of C60 thin films. Solid State Commun, 1996, 98: 853–858

    CAS  Google Scholar 

  128. Arbogast JA, Darmanyan AP, Foote CS, Rubin Y, Diederich FN, Alvarez MM, Anz SJ, Whetten RL. Photophysical properties of C60. J Phys Chem, 1991, 95: 11–12

    CAS  Google Scholar 

  129. Harilal SS, Bindhu CV, Nampoori VPN, Vallabhan CPG. Optical limiting and thermal lensing studies in C60. J Appl Phys, 1996, 86: 1388–1392

    Google Scholar 

  130. Wudl F. The chemical properties of buckminsterfullerene(C60) and the birth and infancy of fulleroids. Acc Chem Res, 1992, 25: 157–161

    CAS  Google Scholar 

  131. Backer SA, Sivula K, Kavulak DF, Fréchet JMJ. High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives. Chem Mater, 2007, 19: 2927–2929

    CAS  Google Scholar 

  132. Zheng L, Zhou Q, Deng X, Yuan M, Yu G, Cao Y. Methanofullerenes used as electron acceptors in polymer photovoltaic devices. J Phys Chem B, 2004, 18: 11921–11926

    Google Scholar 

  133. Popescu LM, van’t Hof P, Sieval AB, Jonkman HT, Hummelen JC. Thienyl analog of 1-(3-methoxycarbonyl propyl-1-phenyl-[6,6]-methanofullerence for bulk heterojunction photovoltaic devices in combination with polythiophenes. Appl Phys Lett, 2006, 89: 213507-1–213507-3

    Google Scholar 

  134. He Y, Chen H-Y, Hou J, Li Y. Indene-C60 bisadduct: A new acceptor for high-performance polymer solar cells. J Am Chem Soc, 2010, 132: 1377–1382

    CAS  Google Scholar 

  135. He Y, Zhao G, Peng B, Li Y. High-yield synthesis and electrochemical and photovoltaic properties of indene-C70 bisadduct. Adv Funct Mater, 2010, 20: 3383–3389

    CAS  Google Scholar 

  136. Zhao G, He Y, Li Y. 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater, 2010, 22: 4355–4358

    CAS  Google Scholar 

  137. Mühlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C. High photovoltaic performance of a low-bandgap polymer. Adv Mater, 2006, 18, 2884–2889

    Google Scholar 

  138. Walker B, Tamayo AB, Dang X-D, Zalar P, Seo JH, Garcia A, Tantiwiwat M, Nguyen TQ. Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv Funct Mater, 2009, 19: 3063–3069

    CAS  Google Scholar 

  139. Liu P, Li Q, Huang M, Pan W, Deng W. High open circuit voltage organic photovoltaic cells based on oligothiophene derivatives. Appl Phys Lett. 2006, 89: 213501-1–213501-3

    Google Scholar 

  140. Kopidakis N, Mitchell WJ, van de Lagemaat J, Ginley DS, Rumbles G, Shaheen SE, Rance WL. Bulk heterojunction organic photovoltaic devices based on phenyl-cored thiophene dendrimers. Appl Phys Lett, 2006, 89: 103524-1–103524-3

    Google Scholar 

  141. Uhrich C, Schueppel R, Petrich A, Pfeiffer M, Leo K, Brier E, Kilickiran P, Baeuerle P. Organic thin-film photovoltaic cells based on oligothiophenes with reduced bandgap. Adv Funct Mater, 2007, 17: 2991–2999

    CAS  Google Scholar 

  142. Schulze K, Uhrich C, Schüppel R, Leo K, Pfeiffer M, Brier E, Reinold E, Bäuerle P. Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C60. Adv Mater, 2006, 18: 2872–2875

    CAS  Google Scholar 

  143. Hou J, Tan Z, Yan Y, He Y, Yang C, Li Y. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. J Am Chem Soc, 2006, 128: 4911–4916

    CAS  Google Scholar 

  144. Li J, Osasa T, Hirayama Y, Sano T, Wakisaka K, Matsumura M. Organic solar cells consisting of stacked amine-thiophene copolymer and 3,4,9,10-perylenetetracarboxyl-bis-benzimidazole layers. Sol Energy Mater Sol Cells, 2007, 91: 745–750

    CAS  Google Scholar 

  145. Somani PR, Somani SP, Flahaut E, Umeno M. Improving the photovoltaic response of a poly(3-octylthiophene)/n-Si heterojunction by incorporating double-walled carbon nanotubes. Nanotechnology, 2007, 18: 185708-1–185708-5

    Google Scholar 

  146. Olson DC, Shaheen SE, White MS, Mitchell WJ, van Hest MFAM, Collins RT, Ginley DS. Band-offset engineering for enhanced open-circuit voltage in polymer-oxide hybrid solar cells. Adv Funct Mater, 2007, 17: 264–269

    CAS  Google Scholar 

  147. Somani SP, Somani PR, Umeno M, Flahaut E. Improving photovoltaic response of poly(3-hexylthiophene)/n-Si heterojunction by incorporating double walled carbon nanotubes. Appl Phys Lett, 2006, 89: 223505-1–223505-3

    Google Scholar 

  148. Gowrishankar V, Scully SR, McGehee MD, Wang Q, Branz HM. Exciton splitting and carrier transport across the amorphous-silicon/polymer solar cell interface. Appl Phys Lett, 2006, 89: 252102-1–252102-3

    Google Scholar 

  149. Janssen G, Aguirre A, Goovaerts E, Vanlaeke P, Poortmans J, Manca J. Optimization of morphology of P3HT/PCBM films for organic solar cells: Effects of thermal treatments and spin coating solvents. Eur Phys J Appl Phys, 2007, 37: 287–290

    CAS  Google Scholar 

  150. Zhao Y, Xie Z, Qu Y, Geng Y, Wang L. Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene): Methanofullerene bulk-heterojunction photovoltaic cells. Appl Phys Lett, 2007, 90: 043504-1–043504-3

    Google Scholar 

  151. Tu G, Bilge A, Adamczyk S, Forster M, Heiderhoff R, Balk LJ, Mühlbacher D, Morana M, Koppe M, Scharber MC, Choulis SA, Brabec CJ, Scherf U. The influence of interchain branches on solid state packing, hole mobility and photovoltaic properties of poly(3-hexylthiophene) (P3HT). Macromol Rapid Commun, 2007, 28: 1781–1785

    CAS  Google Scholar 

  152. Chang Y-T, Hsu S-L, Su M-H, Wei K-H. Intramolecular donor-acceptor regioregular poly(hexylphenanthrenyl-imidazole thiophene) exhibits enhanced hole mobility for heterojunction solar cell applications. Adv Mater, 2009, 21: 2093–2097

    CAS  Google Scholar 

  153. Hou J, Park M-H, Zhang S, Yao Y, Chen L-M, Li J-H, Yang Y. Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b′]dithiophene. Macromolecules, 2008, 41: 6012–6018

    CAS  Google Scholar 

  154. Liang Y, Feng D, Wu Y, Tsai S-T, Li G, Ray C, Yu L. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc, 2009, 131: 7792–7799

    CAS  Google Scholar 

  155. Liang Y, Feng D, Gao J, Szarko JM, Ray C, Chen LX, Yu L. Regioregular oligomer and polymer containing thieno[3,4-b]thiophene moiety for efficient organic solar cells. Macromolecules, 2009, 42: 1091–1098

    CAS  Google Scholar 

  156. Wang E, Wang L, Lan L, Luo C, Zhuang W, Peng J, Cao Y. High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett, 2008, 92: 033307-1–033307-3

    Google Scholar 

  157. Bu L, Guo X, Yu B, Qu Y, Xie Z, Yan D, Geng Y, Wang F. Monodisperse co-oligomer approach toward nanostructured films with alternating donor-acceptor lamellae. J Am Chem Soc, 2009, 131: 13242–13243

    CAS  Google Scholar 

  158. Huo L, Guo X, Zhang S, Li Yongfang, Hou J. PBDTTTZ: A broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules, 2011, 44: 4035–4037

    CAS  Google Scholar 

  159. Zhang M, Guo X, Li Y. Synthesis and characterization of a copolymer based on thiazolothiazole and dithienosilole for polymer solar cells. Adv Energy Mater, DOI: 10.1002/aenm.201100193

  160. Wang M, Hu X, Liu P, Li W, Gong X, Huang F, Cao Y. Donor acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1, 2,5]thiadiazole for high-performance polymer solar cells. J Am Chem Soc, 2011, 133: 9638–9641

    CAS  Google Scholar 

  161. Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics, 2009, 3: 297–302

    CAS  Google Scholar 

  162. Demadrille R, Delbosc N, Kervella Y, Firon M, Bettignies RD, Billon M, Rannou P, Pron A. Conjugated alternating copolymer of dialkylquaterthiophene and fluorenone: Synthesis, characterisation and phtovoltaic properties. J Mater Chem, 2007, 17: 4661–4669

    CAS  Google Scholar 

  163. Boudreault P-LT, Michaud A, Leclerc M. A new poly(2,7-dibenzosilole)derivative in polymer solar cells. Macromol Rapid Commun, 2007, 28: 2176–2179

    CAS  Google Scholar 

  164. Huo L, Guo X, Li Y, Hou J. Synthesis of a polythieno[ 3,4-b]thiophene derivative with a low-lying HOMO level and its application in polymer solar cells. Chem Commun, DOI: 10.1039/c1cc12643a

  165. Huang Y, Huo L, Zhang S, Guo X, Han CC, Li Y, Hou J. Sulfonyl: A new application of electron-withdrawing substituent in highly efficient photovoltaic polymer. Chem Commun, DOI: 10.1039/c1cc12575c

  166. Liang F, Lu J, Ding J, Movileanu R, Tao Y. Design and synthesis of alternating regioregular oligothiophenes/benzothiadiazole copolymers for organic solar cells. Macromolecules, 2009, 42: 6107–6114

    CAS  Google Scholar 

  167. Ahmed E, Kim FS, Xin H, Jenekhe SA. Benzobisthiazole-thiophene copolymer semiconductors: Synthesis, enhanced stability, field-effect transistors, and efficient solar cells. Macromolecules, 2009, 42: 8615–8618

    CAS  Google Scholar 

  168. Liu Y, Wan X, Wang Fei, Zhou J, Long G, Tian J, You J, Yang Y, Chen Y. Spin-coated small molecules for high performance solar cells. Adv Energy Mater, DOI: 10.1002/aenm.201100230

  169. Hou X-Y, Li TC, Yin C-R, Xu H, Lin J, Hua Y-R, Chen D-Y, Xie L-H, Huang W. Stabel hole-transporting molecular glasses based on complicated 9,9-diarylfluorenes (CDAFs). Synth Met, 2009, 159: 1055–1060

    CAS  Google Scholar 

  170. Chochos CL, Economopoulos SP, Deimede V, Gregoriou VG, Lloyd MT, Malliaras GG. Synthesis of a soluble n-type cyano substituted polythiophene derivative: a potential electron acceptor in polymeric solar cells. J Phys Chem C, 2007, 111: 10732–10740

    CAS  Google Scholar 

  171. Pacios R, Chatten AJ, Kawano K, Durrant JR, Bradley DDC, Nelson J. Effects of photo-oxidation on the performance of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene]: [6,6]-phenyl c61-butyric acid methyl ester solar cells. Adv Funct Mater, 2006, 16: 2117–2126

    CAS  Google Scholar 

  172. Tan Z, Yang C, Zhou E, Wang X, Li Y. Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer. Appl Phys Lett, 2007, 91: 023509-1–023509-3

    Google Scholar 

  173. Kiezke T, Hörhold H-H, Neher D. Efficient polymer solar cells based on M3EH-PPV. Chem Mater, 2005, 17: 6532–6537

    Google Scholar 

  174. Roquet S, Cravino A, Leriche P, Alêvêque O, Frêre P, Roncali J, Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. J Am Chem Soc, 2006, 128: 3459–3466

    CAS  Google Scholar 

  175. Osasa T, Yamamoto S, Matsumura M. Formation of a bulk-heterojunction structure in organic solar cells by annealing stacked amorphous and microcrystalline layers. Adv Funct Mater, 2007, 17: 2937–2942

    CAS  Google Scholar 

  176. Benson-Smith JJ, Goris L, Vandewal K, Haenen K, Manca JV, Vanderzande D, Bradley DDC, Nelson J. Formation of a ground-state charge-transfer complex in polyfluorene/[6,6]-phenyl-C61 butyric acid methyl ester (pcbm) blend films and its role in the function of polymer/pcbm solar cells. Adv Funct Mater, 2004, 17: 451–457

    Google Scholar 

  177. El-Nahass MM, Zeyada HM, Abd-El-Rahman KF, Darwish AAA. Fabrication and characterization of 4-tricyanovinyl-N,N diethylaniline / p-silicon hybrid organic-inorganic solar cells. Sol Energy Ma ter Sol Cells, 2007, 91: 1120–1126

    CAS  Google Scholar 

  178. Lai W-Y, Zhu X-R, He Q-Y, Huang W. Synthesis and properties of Triphenylamine- and 9-phenylcarbazole-cored star-shaped terfluorenes: Understanding the effect of molecular dimensionality. Chem Lett, 2009, 38: 392–393

    CAS  Google Scholar 

  179. Zhang J, Yang Y, He C, He Y, Zhao G, Li Y. Solution-processable star-shaped photovoltaic organic molecule with triphenylamine core and benzothiadiazole-thiophene arms. Macromolecules, 2009, 42: 7619–7622

    CAS  Google Scholar 

  180. Zhang J, Deng D, He C, He Y, Zhang M, Zhang Z-G, Zhang Z, Li Y. Solution-processable star-shaped molecules with triphenylamine core and dicyanovinyl endgroups for organic solar cells. Chem Mater, 2011, 23: 817–822

    CAS  Google Scholar 

  181. Shang H, Fan H, Liu Y, Hu W, Li Y, Zhan X. A Solution-processable star-Shaped molecule for high-performance organic solar cells. Adv Mater, 2011, 23: 1554–1557

    CAS  Google Scholar 

  182. Yakimov A, Forrest SR. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl Phys Lett, 2002, 80: 1667–1669

    CAS  Google Scholar 

  183. Jenekhe SA, Yi S. Efficient photovoltaic cells from semiconducting polymer heterojunctions. Appl Phys Lett, 2000, 77: 2635–2637

    CAS  Google Scholar 

  184. Pandey AK, Nunzi J-M. Efficient flexible and thermally stable pentacene/C60 small molecule based organic solar cells. Appl Phys Lett, 2006, 89: 213506-1–213506-3

    Google Scholar 

  185. Shao Y, Sista S, Chu C-W, Sievers D, Yang Y. Enhancement of tetracene photovoltaic devices with heat treatment. Appl Phys Lett, 2007, 90: 103501-1–103501-3

    Google Scholar 

  186. Karak S, Reddy VS, Ray SK, Dhar A. Organic photovoltaic devices based on pentacene/N,N′-dioctyl-3,4,9,10-perylenedicarboximide heterojunctions. Org Electron, 2009, 10: 1006–1010

    CAS  Google Scholar 

  187. Cremer J, Bäuerle P. Perylene-oligothiophene-perylene triads for photovoltaic applications. Eur J Org Chem, 2005, 3715–3723

  188. Fujishima D, Kanno H, Kinoshita T, Maruyama E, Tanaka M, Shirakawa M, Shibata K. Organic thin-film solar cell employing a novel electron-donor material. Sol Energy Mater Sol Cells, 2009, 93: 1029–1032

    CAS  Google Scholar 

  189. Pandey AK, Nunzi J-M. Rubrene/fullerene heterostructures with a half-gap electroluminescence threshold and large photovoltage. Adv Mater, 2007, 19: 3613–3617

    CAS  Google Scholar 

  190. Xie L-H, Liang J, Song J, Yin C-R, Huang W. Spirocyclic aromatic hydrocarbons (SAHs) and their synthetic methodologies. Curr Org Chem, 2010, 14: 2169–2195

    CAS  Google Scholar 

  191. Chen WB, Xiang HF, Xu Z-X, Yan B-P, Roy VAL, Che C-M, Lai P-T. Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer. Appl Phys Lett, 2007, 91: 191109-1–191109-3

    Google Scholar 

  192. Hong ZR, Maennig B, Lessmann R, Pfeiffer M, Leo K, Simon P. Improved efficiency of zinc phthalocyanine/C60 based photovoltaic cells via nanoscale interface modification. Appl Phys Lett, 2007, 90: 203505-1–203505-3

    Google Scholar 

  193. Inoue J, Yamagishi K, Yamashita M. Photovoltaic properties of multilayer organic thin films. J Cryst Growth, 2007, 298: 782–786

    CAS  Google Scholar 

  194. Suemori K, Miyata T, Yokoyama M, Hiramoto M. Modified buffer layers for polymer photovoltaic devices. Appl Phys Lett, 2007, 86: 063509-1–063509-3

    Google Scholar 

  195. Perez MD, Borek C, Djurovich PI, Mayo EI, Lunt RR, Forrest SR, Thompson ME. Organic photovoltaics using tetraphenylbenzoporphyrin complexes as donor layers. Adv Mater, 2009, 21: 1517–1520

    CAS  Google Scholar 

  196. Gommans HHP, Cheyns D, Aernouts T, Girotto C, Poortmans J, Heremans P. Electro-optical study of subphthalocyanine in a bilayer organic solar cell. Adv Funct Mater, 2007, 17: 2653–2658

    CAS  Google Scholar 

  197. Gommans H, Aernouts T, Verreet B, Heremans P, Medina A, Claessens CG, Torres T. Perfluorinated subphthalocyanine as a new acceptor material in a small-molecule bilayer organic solar cell. Adv Funct Mater, 2009, 19: 3435–3439

    CAS  Google Scholar 

  198. Ma B, Woo CH, Miyamoto Y, Fréchet JMJ. Solution processing of a small molecule, subnaphthalocyanine, for efficient organic photovoltaic cells. Chem Mater, 2009, 21: 1413–1417

    CAS  Google Scholar 

  199. Fang C, Qi XY, Fan QL, Wang LH, Huang W. A facile route to semiconductor nanocrystal-semiconducting polymer complex using amine-functionalized rod-coil triblock copolymer as multidentate ligand. Nanotechnology, 2007, 18: 035704–035708

    Google Scholar 

  200. Schön JH, Kloc C, Batlogg B. Efficient photovoltaic energy conversion in pentacene-based heterojunctions. Appl Phys Lett, 2000, 77: 2473–2475

    Google Scholar 

  201. Berson S, de Bettignies R, Bailly S, Guillerez S, Jousselme B. Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv Funct Mater, 2007, 17: 3363–3370

    CAS  Google Scholar 

  202. Valentini L, Kenny JM. Novel approaches to developing carbon nanotube based polymer composites: Fundamental studies and nanotech applications. Polymer, 2005, 46: 6715–6718

    CAS  Google Scholar 

  203. Xiao J, Dunham S, Liu P, Zhang Y, Kocabas C, Moh Lionel, Huang Y, Hwang K-C, Lu C, Huang W, Rogers JA. Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett, 2009, 9: 4311–4319

    CAS  Google Scholar 

  204. Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater, 1999, 11: 1281–1285

    CAS  Google Scholar 

  205. Geng J, Zeng T. Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J Am Chem Soc, 2006, 128: 16827–16833

    CAS  Google Scholar 

  206. Nogueira AF, Lomba BS, Soto-Oviedo MA, Correia CRD. Polymer solar cells using single-wall carbon nanotubes modified with thiophene pedant groups. J Phys Chem C, 2007, 111: 18431–18438

    CAS  Google Scholar 

  207. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimentional gas of massless dirac fermions in graphene. Nature, 2005, 438: 197–200

    CAS  Google Scholar 

  208. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    CAS  Google Scholar 

  209. Jiang X, Ma Y, Li J, Fan Q, Huang W. Self-assembly of reduced graphene oxide into three-dimentional architecture by divalent ion linkage. J Phys Chem C, 2010, 114: 22462–22465

    CAS  Google Scholar 

  210. Qi X, Pu K-Y, Li Hai, Zhou X, Wu S, Fan Q-L, Liu B, Boey F, Huang W, Zhang H. Amphiphilic graphene Composites. Angew Chem Int Ed, 2010, 49: 9426–9429

    CAS  Google Scholar 

  211. Qi X, Pu K-Y, Zhou X, Li Hai, Liu B, Boey F, Huang W, Zhang H. Conjugated-polyelectrolyte-funcionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small, 2010, 6: 663–669

    CAS  Google Scholar 

  212. Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y, Wei J, Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater, 2009, 19: 894–904

    CAS  Google Scholar 

  213. Cravino A. Conjugated polymers with tethered electron-accepting moieties as ambipolar materials for photovoltaics. Polym Int, 2007, 56: 943–956

    CAS  Google Scholar 

  214. Roncali J. Linear p-conjugated systems derivatized with C60-fullerene as molecular heterojunctions for organic photovoltaics. Chem Soc Rev, 2005, 34: 483–495

    CAS  Google Scholar 

  215. Sommer M, Hüttner S, Steiner U, Thelakkat M. Influence of molecular weight on the solar cell performance of double-crystalline donor-acceptor block copolymers. Appl Phys Lett, 2009, 95: 183308-1–183308-3

    Google Scholar 

  216. Zhang Q, Cirpan A, Russell TP, Emrick T. Donor-acceptor poly(thiophene-block-perylene diimide) copolymers: Synthesis and solar cell fabrication. Macromolecules, 2009, 42: 1079–1082

    CAS  Google Scholar 

  217. Yamamoto Y, Fukushima T, Suna Y, Ishii N, Saeki A, Seki S, Tagawa S, Taniguchi M, Kawai T, Aida T. Photoconductive coaxial nanotuges of molecularly connected electron donor and acceptor layers. Science, 2006, 314: 1761–1764

    CAS  Google Scholar 

  218. Tan Z, Hou J, He Y, Zhou E, Yang C, Li Y. Synthesis and photovoltaic properties of a donor-acceptor double-cable polythiophene with high content of C60 pendant. Macromolecules, 2007, 40: 1868–1873

    CAS  Google Scholar 

  219. Bu L, Guo X, Yu B, Qu Y, Xie Z, Yan D, Geng Y, Wang F. Monodisperse co-oligomer approach toward nanostructured films with alternating donor-acceptor lamellae. J Am Chem Soc, 2009, 131: 13242–13243

    CAS  Google Scholar 

  220. Huang W, Meng H, Yu WL, Pei J, Chen ZK, Lai YH. A novel series of p-n diblock light-emitting copolymers based on oligothiophenes and 1,4-bis(oxadiazolyl)-2,5-dialkyloxybenzene. Macromolecules, 1999, 32: 118–126

    CAS  Google Scholar 

  221. Yu WL, Meng H, Pei J, Huang W. Tuning redox behavior and emissive wavelength of conjugated polymers by p-n diblock structures. J Am Chem Soc, 1998, 120: 11808–11809

    CAS  Google Scholar 

  222. Yu WL, Meng H, Pei J, Huang W, Li Y, Heeger AJ. Synthesis and characterization of a new p-n diblock light-emitting copolymer. Macromolecules, 1998, 31: 4838–4844

    CAS  Google Scholar 

  223. Mi BX, Dong Y, Li Z, Lam JWY, Häußler M, Sung HHY, Kwok HS, Dong Y, Williams ID, Liu Y, Luo Y, Shuai Z, Zhu D, Tang BZ. Making silole photovoltaically active by attaching carbazolyl donor groups to the silolyl acceptor core. Chem Commun, 2005, 3583–3585

  224. Parmer JE, Mayer AC, Hardin BE, Scully SR, McGehee MD, Heeney M, McCulloch I. Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene). Appl Phys Lett, 2008, 92: 113309-1–113309-3

    Google Scholar 

  225. Liang Y, Wu Y, Feng D, Tsai S-T, Son H-J, Li G, Yu L, Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc, 2009, 131: 56–57

    CAS  Google Scholar 

  226. Kim I, Haverinen HM, Li J, Jabour GE. Enhanced power conversion efficiency of p-i-n type organic solar cells by employing a p-layer of palladium phthalocyanine. Appl Phys Lett, 2010, 97: 203301-1–203301-3

    Google Scholar 

  227. Yakimov A, Forrest SR. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl Phys Lett, 2002, 80: 1667–1669

    CAS  Google Scholar 

  228. Colsmann A, Junge J, Kayser C, Lemmer U. Organic tandem solar cells comprising polymer and small-molecule subcells. Appl Phys Lett, 2006, 89: 203506-1–203506-3

    Google Scholar 

  229. Walzer K, Maennig B, Pfeiffer M, Keo K. Highly efficient organic devices based on electrically doped transport layers. Chem Rev, 2007, 107: 1233–1271

    CAS  Google Scholar 

  230. Kim K, Carroll DL. Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Let, 2005, 87: 203113-1–203113-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to BaoXiu Mi or Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Zhao, X., Lu, X. et al. Organic thin-film solar cells: Devices and materials. Sci. China Chem. 55, 553–578 (2012). https://doi.org/10.1007/s11426-011-4400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4400-1

Keywords

Navigation