Skip to main content
Log in

Effects of surfactants on enzyme-containing reversed micellar system

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

With the development of colloid interface and enzyme technologies, enzyme-containing reversed micellar system has been receiving much attention in bioseparation and bioconversion. Because of its high efficiency, it has brought new opportunities for the development of molecular biotechnology. Reversed micelles represent nano-sized aqueous droplets stabilized by surfactant amphiphiles inside the bulk organic solvents. The entrapped enzymes have enhanced activities under those conditions as suited in the lipid bilayers of biological membranes. The fundamentals of enzyme-containing reversed micellar system are described in this paper, with special emphasis on the effects of surfactants varying in concentrations and structures. The latest study progress on the surfactants application in enzyme-containing reversed micelles is reviewed. The introduction of novel functional surfactants in micellar enzymology and their future development are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou QY, Gao YT. Microbiology of Environmental Engineering (in Chinese). 2nd ed. Beijing: Higher Education Press, 2000. 276–279

    Google Scholar 

  2. Melo EP, Aires-Barros MR, Cabral JM. Reverse micelles and protein biotechnology. Biotechnol Annu Rev, 2001, 7: 87–129

    Article  CAS  Google Scholar 

  3. Tonova K, Lazarova Z. Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion. Biotechnol Adv, 2008, 26: 516–532

    Article  CAS  Google Scholar 

  4. Hoar TP, Schulman JH. Transparent water in oil dispersions: the oleopathic hydromicelle. Nature, 1943, 152: 102–103

    Article  CAS  Google Scholar 

  5. Hanahan DJ. The enzymatic degradation of phosphatidylcholine in diethyl-ether. J Biol Chem, 1952, 195: 199–206

    CAS  Google Scholar 

  6. Misiorowski RL, Wells MA. Activity of phospholipase A2 in reversed micelles of phosphatidylcholine in diethyl ether: Effect of water and cations. Biochemistry, 1974, 13: 4921–4927

    Article  CAS  Google Scholar 

  7. Luisi PL, Henninger F, Joppich M. Solubilization and pectroscopic properties of alpha-chymotrypsin in cyclohexane. Biochem Biophys Res Commun, 1977, 74: 1384–1389

    Article  CAS  Google Scholar 

  8. Martinek K, Leavashov AV, KIyachko NL, Berezin IV. Catalysis by watersoluble enzymes in organic solvents stabilization of enzymes against the denaturation (inactivation) when they are included in inversed micelles of surface-active substana. Dokl Akad Nauk SSSR, 1977, 236: 920–923 (in Russian); 1978, 236: 951–953 (in English)

    CAS  Google Scholar 

  9. Feng XS, Liu HG, Hao JC. Colloid Chemistry (in Chinese). Beijing: Chemical Industry Press, 2005. 183–202

    Google Scholar 

  10. Zhong KL, Yin BZ, Jin LY. Progress in study of micelle as nanoreactor (in Chinese). Polymer Bulletin, 2009, 2: 48–57

    Google Scholar 

  11. Martinek K, Klyachko NL, Kabanov AV, Khmelnitsky YL, Levashov AV. Micellar enzymology: its relation to membranology. Biochim Biophys Acta, 1989, 981: 161–172

    Article  CAS  Google Scholar 

  12. Ma GH, Wang P, Su ZG. Nanoscience and enzyme (in Chinese). Chin Basic Sci, 2009, 5: 49–54

    Google Scholar 

  13. Padma VI, Laxmi A. Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem, 2008, 43: 1019–1032

    Article  Google Scholar 

  14. Das D, Das PK. Superior activity of structurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles. Langmuir, 2009, 25: 4421–4428

    Article  CAS  Google Scholar 

  15. Biasutti MA, Abuin EB, Silber JJ, Correa NM, Lissi EA. Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Adv Colloid Interface Sci, 2008, 136: 1–24

    Article  CAS  Google Scholar 

  16. Carvalho CML, Cabral JMS. Reverse micelles as reaction media for lipases. Biochimie, 2000, 82: 1063–1085

    Article  CAS  Google Scholar 

  17. Bansal-Mutalik R, Gaikar VG. Reverse micellar solutions aided permeabilization of baker’s yeast. Process Biochem, 2006, 41: 133–141

    Article  CAS  Google Scholar 

  18. Hebbar HU, Sumana B, Raghavarao KSMS. Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresour Technol, 2008, 99: 4896–4902

    Article  Google Scholar 

  19. Imm JY, Kim SC. Convenient partial purification of polyphenol oxidase from apple skin by cationic reversed micellar extraction. Food chem, 2009, 113: 302–306

    Article  CAS  Google Scholar 

  20. Bansal-Mutalik R, Gaikar VG. Cell permeabilization for extraction of penicillin acylase from Escherichia coli by reverse micellar solutions. Enzyme Microb Technol, 2003, 32: 14–26

    Article  CAS  Google Scholar 

  21. Liu JG, Xing JM, Shen R, Yang CL, Liu HZ. Reverse micelles extraction of nattokinase from fermentation broth. Biochem Eng J, 2004, 21: 273–278

    Article  Google Scholar 

  22. Streitner N, Voß C, Flaschel E. Reverse micellar extraction systems for the purification of pharmaceutical grade plasmid DNA. J Biotechnol, 2007, 131: 188–196

    Article  CAS  Google Scholar 

  23. Goto A, Yoshioka H, Manabe M, Goto R. NMR, spectroscopic study on the dissolution of water in sodium bis(2-ethylhexyl) sulfosuccinate/toluene solution. Langmuir, 1995, 11: 4873–4875

    Article  CAS  Google Scholar 

  24. Wang WW, Yuan XZ, Zeng GM, Liang YS, Chao Y. Enzymatic hydrolysis of cellulose in reverse micelles (in Chinese). Environ Sci, 2010, 31: 2202–2207

    CAS  Google Scholar 

  25. Kabanov AV, Levashov AV, Klyachko NL, Namyotkin SN, Pshezhetsky AV. Enzymes entrapped in reversed micelles of surfactants in organic solvents: A theoretical treatment of the catalytic activity regulation. J Theor Biol, 1988, 133: 327–343

    Article  CAS  Google Scholar 

  26. Kabanov AV, Levashov AV, Martinek K. Giving of membrane active properties to water soluble enzymes via their artificial hydrophobization—A new approach to regulation of the kinetic parameters of enzymatic reactions in the systems “surfactant-water-organic solvent” (in Russian). Vestnik MGU, Ser II, Khimiya, 1986, 27: 591–594

    CAS  Google Scholar 

  27. Brown ED, Yada RY, Marangoni AG. The dependence of the lipolytic activity of Rhizopus arrhizus lipase on surfactant concentration in Aerosol-OT/isooctane reverse micelles and its relationship to enzyme structure. Biochim Biophys Acta, 1993, 1161: 66–72

    Article  CAS  Google Scholar 

  28. Sánchez-Ferret Á, García-Carmona F. Biocatalysis in reverse self-assembling structures: Reverse micelles and reverse vesicles. Enzyme Microb Technol, 1994, 16: 409–415

    Article  Google Scholar 

  29. Rodakiewicz-Nowak J, Ito M. Effect of AOT on enzymatic activity of the organic solvent resistant tyrosinase from Streptomyces sp. REN-21 in aqueous solutions and water-in-oil microemulsions. J Colloid Interface Sci, 2005, 284: 674–679

    Article  CAS  Google Scholar 

  30. Bommarius AS, Wang DIC, Hatton TA. Xanthine oxidase reactivity in reversed micellar systems: A contribution to the prediction of enzymatic activity in organized media. J Amer Chem Soc, 1995, 117: 4515–4523

    Article  CAS  Google Scholar 

  31. Kuwahara Y, Goto A, Ibuki Y, Yamazaki K, Goto R. Catalytic activity of hexokinase in reversed micelles. J Colloid Interface Sci, 2001, 233: 190–196

    Article  CAS  Google Scholar 

  32. Shome A, Roy S, Das PK. Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface. Langmuir, 2007, 23: 4130–4136

    Article  CAS  Google Scholar 

  33. Ermakova EA, Zakhartchenko NL, Zuev YF. Effect of surface potential of reverse micelle on enzyme-substrate complex formation. Colloids Surf A, 2008, 317: 297–302

    Article  CAS  Google Scholar 

  34. Das D, Das PK. Improving the lipase activity profile in cationic water-in-oil microemulsions of hydroxylated surfactants. Langmuir, 2003, 19: 9114–9119

    Article  CAS  Google Scholar 

  35. Das D, Roy S, Mitra RN, Dasgupta A, Das PK. Head-group size or hydrophilicity of surfactants: the major regulator of lipase activity in cationic water-in-oil microemulsions. Chem Eur J, 2005, 11: 4881–4889

    Article  CAS  Google Scholar 

  36. Yuan XZ, Ren FY, Zeng GM, Zhong H, Fu HY, Liu J, Xu XM. Adsorption of surfactants on a Pseudomonas aeruginosa strain and the effect on cell surface lypohydrophilic character. Appl Microbiol Biotechnol, 2007, 76: 1189–1198

    Article  CAS  Google Scholar 

  37. Zhong H, Zeng GM, Yuan XZ, Fu HY, Huang GH, Ren FY. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol, 2007, 77: 447–455

    Article  CAS  Google Scholar 

  38. Zhong H, Zeng GM, Liu JX, Xu XM, Yuan XZ, Fu HY, Huang GH, Liu ZF, Ding Y. Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol, 2008, 79: 671–677

    Article  CAS  Google Scholar 

  39. Dasgupta A, Das D, Das PK. Probing the relationship between interfacial concentrations and lipase activity in cationic w/o microemulsions: A quantitative study by chemical trapping. Langmuir, 2007, 23: 4137–4143

    Article  CAS  Google Scholar 

  40. Mitra RN, Dasgupta A, Das D, Roy S, Debnath S, Das PK. Geometric constraints at the surfactant headgroup: Effect on lipase activity in cationic reverse micelles. Langmuir, 2005, 21: 12115–12123

    Article  CAS  Google Scholar 

  41. Debnath S, Das D, Das PK. Unsaturation at the surfactant head: influence on the activity of lipase and horseradish peroxidase in reverse micelles. Biochem Biophys Res Commun, 2007, 356: 163–168

    Article  CAS  Google Scholar 

  42. Dasgupta A, Das D, Mitra RN, Das PK. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions. J Colloid Interface Sci, 2005, 289: 566–573

    Article  CAS  Google Scholar 

  43. Orlich B, Schomäcker R. Candida Rugosa lipase reactions in nonionic w/o-microemulsion with a technical surfactant. Enzyme Microb Technol, 2001, 28: 42–48

    Article  CAS  Google Scholar 

  44. Chen N, Fan JB, Xiang J, Chen J, Liang Y. Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles. Biochim Biophys Acta, 2006, 1764: 1029–1035

    CAS  Google Scholar 

  45. Zhang Y, Huang XR, Huang F, Li YZ, Qu YB, Gao PJ. Catalytic performance of lignin peroxidase in a novel reverse micelle. Colloids Surf B, 2008, 65: 50–53

    Article  CAS  Google Scholar 

  46. Debnath S, Das D, Dutta S, Das PK. Imidazolium bromide-based ionic liquid assisted improved activity of trypsin in cationic reverse micelles. Langmuir, 2010, 26: 4080–4086

    Article  CAS  Google Scholar 

  47. Mulligan CN. Environmental applications for biosurfactants. Environ Pollut, 2005, 133: 183–198

    Article  CAS  Google Scholar 

  48. Zeng GM, Fu HY, Zhong H, Yuan XZ, Fu MX, Wang W, Huang GH. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix. Biodegradation, 2007, 18: 303–310

    Article  CAS  Google Scholar 

  49. Yuan XZ, Meng YT, Zeng GM, Fang YY, Shi JG. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids Surf A, 2008, 317: 256–261

    Article  CAS  Google Scholar 

  50. Chávez FP, Gordillo F, Jerez CA. Adaptive responses and cellular behaviour of biphenyl-degrading bacteria toward polychlorinated biphenyls. Biotechnol Adv, 2006, 24: 309–320

    Article  Google Scholar 

  51. Singh A, Van Hamme JD, Ward OP. Surfactants in microbiology and biotechnology. Part 2, Application aspects. Biotechnol Adv, 2007, 25: 99–121.

    CAS  Google Scholar 

  52. Liu J, Yuan XZ, Zeng GM, Shi JG, Chen S. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem, 2006, 41: 2347–2351

    Article  CAS  Google Scholar 

  53. Zeng GM, Shi JG, Yuan XZ, Liu J, Zhang ZB, Huang GH, Li JB, Xi BD, Liu HL. Effects of Tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost. Enzyme Microb Technol, 2006, 39: 1451–1456

    Article  CAS  Google Scholar 

  54. Liang YS, Yuan XZ, Zeng GM, Hu CL, Zhong H, Huang DL, Tang L, Zhao JJ. Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid. Biodegradation, 2010, 21: 615–624

    Article  CAS  Google Scholar 

  55. Xie YW, Ye RQ, Liu HL. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf A, 2006, 279: 175–178

    Article  CAS  Google Scholar 

  56. Reddy AS, Chen CY, Baker SC, Chen CC, Jean JS, Fan CW, Chen HR, Wang JC. Synthesis of silver nanoparticles using surfactin: A biosurfactant stabilizing agent. Mat Lett, 2006, 63: 1227–1230

    Article  Google Scholar 

  57. Kiran GS, Sabu A, Selvin J. Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol, 2010, doi: 10.1016/j.jbiotec.2010.06.012

  58. Mulligan CN. Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci, 2009, 14: 372–378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XingZhong Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Yuan, X., Zeng, G. et al. Effects of surfactants on enzyme-containing reversed micellar system. Sci. China Chem. 54, 715–723 (2011). https://doi.org/10.1007/s11426-011-4266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4266-2

Keywords

Navigation