Skip to main content
Log in

Thermo-responsive stick-slip behavior of advancing water contact angle on the surfaces of poly(N-isopropylacrylamide)-grafted polypropylene membranes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Wettability of a solid surface is highly important to its practical application, especially for the surface that shows thermo-responsive properties. In this paper, we describe a thermo-responsive stick-slip behavior of water droplets on the surfaces of poly(N-isopropylacrylamide) (PNIPAM)-grafted polypropylene membranes. Field emission scanning electron microscope (FESEM) images elucidate that the morphology of PNIPAM-grafted membrane surface is thermo-responsive, i.e., the surface becomes rougher above the lower critical solution temperature (LCST) of PNIPAM. On the surface of nascent polypropylene membranes, the water droplet shows a smooth motion resulting in advancing and receding water contact angles of 111° and ∼65°, respectively. On the PNIPAM-grafted membrane surfaces, the water droplet shows a stick-slip pattern above the LCST, whereas it advances smoothly below the LCST. This phenomenon is reproducible and can be ascribed to the energy barriers enhanced by the shrink of PNIPAM chains above the LCST. We also find that the slip contact angle decreases from 102° to 92° after several stick-slip cycles. This decrease is attributed to the water adsorption on the grafted PNIPAM layer, which is confirmed by the continuous decrease of the receding water contact angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kwok DY, Neumann AW. Contact angle interpretation: combining rule for solid-liquid intermolecular potential. J Phys Chem B, 2000, 104(4): 741–746

    Article  CAS  Google Scholar 

  2. Wu JY, Farouk T, Ward CA. Pressure dependence of the contact angle. J Phys Chem B, 2007, 111(22): 6189–6197

    Article  CAS  Google Scholar 

  3. Zhang JL, Han YC. A topography/chemical composition gradient polystyrene surface: toward the investigation of the relationship between surface wettability and surface structure and chemical composition. Langmuir, 2008, 24(3): 796–801

    Article  Google Scholar 

  4. Zhao Y, Lu QH, Li M, Li X. Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface. Langmuir, 2007, 23(11): 6212–6217

    Article  CAS  Google Scholar 

  5. Giovambattista N, Debenedetti PG, Rossky PJ. Effect of surface polarity on water contact angle and interfacial hydration structure. J Phys Chem B, 2007, 111(32): 9581–9587

    Article  CAS  Google Scholar 

  6. Bormashenko E, Bormashenko Y, Whyman G, Pogreb R, Musin A, Jager R, Barkay Z. Contact angle hysteresis on polymer substrates established with various experimental techniques, its interpretation, and quantitative characterization. Langmuir, 2008, 24(8): 4020–4025

    Article  CAS  Google Scholar 

  7. Long J, Chen P. On the role of energy barriers in determining contact angle hysteresis. Adv Colloid Interf Sci, 2006, 127(2): 55–66

    Article  CAS  Google Scholar 

  8. Kwok DY, Gietzelt T, Grundke K, Jacobasch HJ, Neumann AW. Contact angle measurements and contact angle interpretation.1. Contact angle measurements by axisymmetric drop shape analysis and a goniometer sessile drop technique. Langmuir, 1997, 13(10): 2880–2894

    Article  CAS  Google Scholar 

  9. Gerdes S, Tiberg F. Dynamic wetting of silica by aqueous triblock copolymer solutions at low concentrations. Langmuir, 1999, 15(14): 4916–4921

    Article  CAS  Google Scholar 

  10. Gilcreest VP, Carroll WM, Rochev YA, Blute I, Dawson KA, Gorelov AV. Thermoresponsive poly(N-isopropylacrylamide) copolymers: contact angles and surface energies of polymer films. Langmuir, 2004, 20(23): 10138–10145

    Article  CAS  Google Scholar 

  11. Tavana H, Yang GC, Yip CM, Appelhans D, Zschoche S, Grundke K, Hair ML, Neumann AW. Stick-slip of the three-phase line in measurements of dynamic contact angles. Langmuir, 2006, 22(2): 628–636

    Article  CAS  Google Scholar 

  12. Denison KR, Boxall C. Photoinduced “stick-slip” on superhydrophilic semiconductor surfaces. Langmuir, 2007, 23(8): 4358–4366

    Article  CAS  Google Scholar 

  13. Yeh KY, Chen LJ, Chang JY. Contact angle hysteresis on regular pillar-like hydrophobic surfaces. Langmuir, 2008, 24(1): 245–251

    Article  CAS  Google Scholar 

  14. Leopoldes J, Bucknall DG. Droplet spreading on microstriped surfaces. J Phys Chem B, 2005, 109(18): 8973–8977

    Article  CAS  Google Scholar 

  15. Kwok DY, Neumann AW. Contact angle measurement and contact angle interpretation. Adv Colloid Interf Sci, 1999, 81(3): 167–249

    Article  CAS  Google Scholar 

  16. Shanahan MER. Simple theory of “stick-slip” wetting hysteresis. Langmuir, 1995, 11: 1041–1043

    Article  CAS  Google Scholar 

  17. Zhang JF, Kwok DY. Contact line and contact angle dynamics in superhydrophobic channels. Langmuir, 2006, 22(11): 4998–5004

    Article  CAS  Google Scholar 

  18. Kusumaatmaja H, Yeomans JM. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir, 2007, 23(11): 6019–6032

    Article  CAS  Google Scholar 

  19. Vertommen MAME, Cornelissen HJL, Dietz CHJT, Hoogenboom R, Kemmere MF, Keurentjes JTF. Pore-covered thermoresponsive membranes for repeated on-demand drug release. J Membr Sci, 2008, 322: 243–248

    Article  CAS  Google Scholar 

  20. Zhang L, Xu TW, Lin Z. Controlled release of ionic drug through the positively charged temperature-responsive membranes. J Membr Sci, 2006, 281(1–2): 491–499

    Article  CAS  Google Scholar 

  21. Ying L, Kang ET, Neoh KG, Kato K, Iwata H. Drug permeation through temperature-sensitive membranes prepared from poly (vinylidene fluoride) with grafted poly(N-isopropylacrylamide) chains. J Membr Sci, 2004, 243(1–2): 253–262

    Article  CAS  Google Scholar 

  22. Da Silva RMP, Mano JF, Reis RL. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol, 2007, 25(12): 577–583

    Article  Google Scholar 

  23. Ebara M, Yamoto M, Nagai S, Aoyagi T, Kikuchi A, Sakai K, Okano T. Incorporation of new carboxylate functionalized co-monomers to temperature-responsive polymer-grafted cell culture surfaces. Surf Sci, 2004, 570(1–2): 134–141

    Article  CAS  Google Scholar 

  24. Okamura A, Itayagoshi M, Hagiwara T, Yamaguchi M, Kanamori T, Shinbo T, Wang PC. Poly(N-isopropylacrylamide)-graft-polypropylene membranes containing adsorbed antibody for cell separation. Biomaterials, 2005, 26(11): 1287–1292

    Article  CAS  Google Scholar 

  25. Yang CC, Tian YQ, Jen AKY, Chen WC. New environmentally responsive fluorescent N-isopropylacrylamide copolymer and its application to DNA sensing. J Polym Sci Part A: Polym Chem, 2006, 44(19): 5495–5504

    Article  CAS  Google Scholar 

  26. Choi YJ, Yamaguchi T, Nakao S. A novel separation system using porous thermosensitive membranes. Ind Eng Chem Res, 2000, 39(7): 2491–2495

    Article  CAS  Google Scholar 

  27. Hesampour M, Huuhilo T, Makinen K, Manttari M, Nystrom M. Grafting of temperature sensitive PNIPAAm on hydrophilised polysulfone UF membranes. J Membr Sci, 2008, 310(1–2): 85–92

    Article  CAS  Google Scholar 

  28. Nagase K, Kobayashi J, Kikuchi AI, Akiyama Y, Kanazawa H, Okano T. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Langmuir, 2008, 24(2): 511–517

    Article  CAS  Google Scholar 

  29. Kim S Y, Kanamori T, Shinbo T. Preparation of thermal-responsive poly(propylene) membranes grafted with N-isopropylacrylamide by plasma-induced polymerization and their permeation. J Appl Polym Sci, 2002, 84(6): 1168–1177

    Article  CAS  Google Scholar 

  30. Liang L, Shi MK, Viswanathan VV, Peurrung LM, Young JS. Temperature-sensitive polypropylene membranes prepared by plasma polymerization. J Membr Sci, 2000, 177(1–2): 97–108

    Article  CAS  Google Scholar 

  31. Liang L, Feng XD, Peurrung L, Viswanathan V. Temperature-sensitive membranes prepared by UV photopolymerization of Nisopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. J Membr Sci, 1999, 162(1–2): 235–246

    Article  CAS  Google Scholar 

  32. Sun TL, Wang GJ, Feng L, Liu BQ, Ma YM, Jiang L, Zhu DB. Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed, 2004, 43(3): 357–360

    Article  CAS  Google Scholar 

  33. Gil ES, Hudson SA. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci, 2004, 29(12): 1173–1222

    Article  CAS  Google Scholar 

  34. Zhao B, Brittain WJ. Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci, 2000, 25(5): 677–710

    Article  CAS  Google Scholar 

  35. Hu MX, Yang Q, Xu ZK. Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2- hydroxyethyl methacrylate via a synergistic effect of photoinitiators. J Membr Sci, 2006, 285(1–2): 196–205

    Article  CAS  Google Scholar 

  36. Yang Q, Hu MX, Dai ZW, Tian J, Xu ZK. Fabrication of glycosylated surface on polymer membrane by UV-induced graft polymerization for lectin recognition. Langmuir, 2006, 22(22): 9345–9349

    Article  CAS  Google Scholar 

  37. Kwok DY, Li A, Neumann AW. Low-rate dynamic contact angles on poly(methyl methacrylate/ethyl methacrylate, 30/70) and the determination of solid surface tensions. J Polym Sci Polym Phys, 1999, 37(16): 2039–2051

    Article  CAS  Google Scholar 

  38. Kwok DY, Li A, Lam CNC, Wu R, Zschoche S, Poschel K, Gietzelt T, Grundke K, Jacobasch HJ, Neumann AW. Low-rate dynamic contact angles on poly [styrene-alt-(hexyl/10-carboxydecyl (90/10) maleimide)] and the determination of solid surface tensions. Macromol Chem Phys, 1999, 200(5): 1121–1133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiKang Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, L., Meng, X., Yang, Y. et al. Thermo-responsive stick-slip behavior of advancing water contact angle on the surfaces of poly(N-isopropylacrylamide)-grafted polypropylene membranes. Sci. China Chem. 53, 183–189 (2010). https://doi.org/10.1007/s11426-010-0004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0004-4

Keywords

Navigation