Skip to main content
Log in

Effect of channel block on the collective spiking activity of coupled stochastic Hodgkin-Huxley neurons

  • Research Papers
  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Toxins, such as tetraethylammonium (TEA) and tetrodotoxin (TTX), can make potassium or sodium ion channels poisoned, respectively, and hence reduce the number of working ion channels and lead to the diminishment of conductance. In this paper, we have studied by numerical simulations the effects of sodium and potassium ion channel poisoning on the collective spiking activity of an array of coupled stochastic Hodgkin-Huxley (HH) neurons. It is found for a given number of neurons sodium or potassium ion channel block can either enhance or reduce the collective spiking regularity, depending on the membrane patch size. For a given smaller or larger patch size, potassium and sodium ion channel block can reduce or enhance the collective spiking regularity, but they have different patch size ranges for the transformation. This result shows that sodium or potassium ion channel block might have different effects on the collective spiking activity in coupled HH neurons from the effects for a single neuron, which represents the interplay among the diminishment of maximal conductance and the increase of channel noise strength due to the channel blocks, as well as the bi-directional coupling between the neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544

    CAS  Google Scholar 

  2. Lecar H, Nossal R. Theory of threshold fluctuations in nerves. Biophys J, 1971, 11: 1048–1067

    CAS  Google Scholar 

  3. White J A, Rubinstein J T, Kay A. R. Channel noise in neurons. Trends Neurosci, 2000, 23: 131–137

    Article  CAS  Google Scholar 

  4. Koch K. Biophysics of Computation: Informational Processing in Single Neurons. New York: Oxford University Press. 1999

    Google Scholar 

  5. van Rossum M C W, O’Brien B J, Smith R G. Effects of noise on the spike timing precision of retinal ganglion cells. J Neurophys, 2003, 89: 2406–2419

    Article  Google Scholar 

  6. Skaugen E, Walløe L. Firing behavior in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol Scand, 1979, 107: 343–363

    CAS  Google Scholar 

  7. Clay J R, DeFelice L J. Relationship between membrane excitability and single channel open-close kinetics. Biophys J 1983, 42: 151–157

    Article  CAS  Google Scholar 

  8. Strassberg A F, DeFelice L J. Limitations of the Hodgkin-Huxley formalism—effects of single-channel kinetics on trans-membrane voltage dynamics. Neural Comput 1993, 5: 843–855

    Google Scholar 

  9. DeFelice L J, Isaac A. Chaotic states in a random world-relationship between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J Stat Phys, 1993, 70: 339–354

    Article  Google Scholar 

  10. Fox R F, Lu Y. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev E, 1994, 49: 3421–3431

    Article  CAS  Google Scholar 

  11. Chow C C, White J A. Spontaneous action potentials due to channel fluctuations. Biophys J, 1996, 71: 3013–3021

    CAS  Google Scholar 

  12. Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neuronal Comput, 1998, 10: 1679–1694

    Article  CAS  Google Scholar 

  13. Bezrukov S M, Vodyanoy I. Noise-induced enhancement of signal-transduction across voltage-dependent ion channels. Nature, 1995, 378: 362–364

    Article  CAS  Google Scholar 

  14. Bezrukov S M, Vodyanoy I. Signal transduction across alamethicin ion channels in the presence of noise. Biophys J, 1997, 73: 2456–2464

    CAS  Google Scholar 

  15. Schmid G, Goychuk I, Hänggi P. Stochastic resonance as a collective property of ion channel assemblies. Europhys Lett, 2001, 56: 22–28

    Article  CAS  Google Scholar 

  16. Jung P, Shuai J W. Optimal sizes of ion channel clusters. Europhys Lett, 2001, 56: 29–35

    Article  CAS  Google Scholar 

  17. Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev Mod Phys, 1998, 70: 223–287

    Article  CAS  Google Scholar 

  18. Hänggi P. Stochastic resonance in biology-how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem, 2002, 3: 285–290

    Article  Google Scholar 

  19. Shuai J W, Jung P. Optimal ion channel clustering for intracellular calcium signaling. Proc Natl Acad Sci, 2003, 100: 506–510

    Article  CAS  Google Scholar 

  20. Ginzburg S L, Pustovoit M A. Bursting dynamics of a model neuron induced by intrinsic channel noise. Fluct Noise Lett, 2003, 3: L265–L274

    Article  Google Scholar 

  21. Schmid G, Goychuk I, Hänggi P, Zeng S, Jung P. Stochastic resonance and optimal clustering for assemblies of ion channels. Fluct Noise Lett, 2004, 4: L33–L42

    Article  Google Scholar 

  22. Gong Y B, Wang M S, Hou Z H, Xin H W. Optimal spike coherence and synchronization on complex Hodgkin-Huxley neuron networks. ChemPhysChem, 2005, 6: 1042–1047

    Article  CAS  Google Scholar 

  23. Shuai J W, Jung P. The dynamics of small excitable ion channel clusters. Chaos, 2006, 16: 026104

    Google Scholar 

  24. Li Y P, Li Q S. Implicit and explicit internal signal stochastic resonance in calcium ion oscillations. Chem Phys Lett, 2006, 417: 498–502

    Article  CAS  Google Scholar 

  25. Schmid G, Goychuk I, Hänggi P. Channel noise and synchronization in excitable membranes. Physica A, 2003, 325: 165–175

    Article  Google Scholar 

  26. Wang M S, Hou Z H, Xin H W. Double-system-size resonance for spiking activity of coupled Hodgkin-Huxley neurons. ChemPhysChem, 2004, 5: 1602–1605

    Article  CAS  Google Scholar 

  27. Schmid G, Goychuk I, Hänggi P. Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model. Phys Bio, 2004, 1: 61–66

    Article  CAS  Google Scholar 

  28. Schmid G, Goychuk I, Hänggi P. Controlling the spiking activity in excitable membranes via poisoning. Physica A, 2004, 344: 665–670

    Article  Google Scholar 

  29. Schmid G, Goychuk I, Hänggi P. Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems. Phys Bio, 2006, 3: 248–254

    Article  CAS  Google Scholar 

  30. Hille B. Ionic Channels of Excitable Membranes, 3rd ed. Sunderland: Sinauer Associates. 2001

    Google Scholar 

  31. Pouget A, Zemel R S, Dayan P. Information processing with population codes. Nat Rev Neurosci, 2000, 1: 125–132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuBing Gong.

Additional information

Supported by the Science Foundation of Ludong University (23140301, L20072805)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Y., Xu, B., Ma, X. et al. Effect of channel block on the collective spiking activity of coupled stochastic Hodgkin-Huxley neurons. Sci. China Ser. B-Chem. 51, 341–346 (2008). https://doi.org/10.1007/s11426-008-0010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0010-y

Keywords

Navigation