Skip to main content
Log in

Ion shot noise in Hodgkin–Huxley neurons

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Ion shot noise, the noise associated to the random passage of ions across the cell membrane, is studied by means of a stochastic model based on the Hodgkin–Huxley equations, which includes gating channels for sodium and potassium cations and leakage channels through the biological membrane. Apart from shot noise, other sources such as extrinsic and channel noise are taken into account. Ion shot noise, of increasing influence for smaller membrane patch sizes S, can lead to the emergence of action potentials in the membrane voltage in the presence of sinusoidal excitation currents below the threshold for the onset of spikes. The spiking activity in the presence of noise has been analyzed in terms of the coefficient of variation CV, the inter-spike interval histogram, the spectrum of membrane voltage fluctuations and the signal-to-noise ratio SNR. CV shows improved coherence in the sequence of randomly generated spikes due to the presence of shot noise. The voltage noise spectra show a common signature of the presence of spikes under different operating conditions, even in the absence of excitation. The SNR exhibits intrinsic stochastic resonance when varying S. For a sinusoidal excitation current with amplitude 1.5 μA/cm2 and frequency 50 Hz, the SNR presents optimal values around 0.2 μm2. When considering the presence of ambient noise in the excitation current, extrinsic stochastic resonance is found for S > 0.6 μm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eisenberg, B.: Ion channels as devices. J. Comput. Electron. 2, 245–249 (2003)

    Article  Google Scholar 

  2. Ha, S.D., Ramanathan, S.: Adaptive oxide electronics: a review. J. Appl. Phys. 110(1–20), 071101 (2011)

    Article  Google Scholar 

  3. Kaneko, Y., Nishitani, Y., Ueda, M.: Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Trans. Electron. Dev. 61, 2827–2833 (2014)

    Article  Google Scholar 

  4. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)

    Article  Google Scholar 

  5. Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 512, 61–64 (2015)

    Article  Google Scholar 

  6. Romeo, A., Dimonte, A., Tarabella, G., D’Angelo, P., Erokhin, V., Iannotta, S.: A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor. APL Mater. 3(1–6), 014909 (2015)

    Article  Google Scholar 

  7. Sourikopoulos, I., Hedayat, S., Loyez, C., Danneville, F., Hoel, V., Mercier, E., Cappy, A.: A 4-fJ/spike artificial neuron in 65 nm CMOS technology. Front. Neurosci. 11(1–4), 123 (2017)

    Google Scholar 

  8. Chua, L.: Memristor, Hodgkin–Huxley and edge of chaos. IOP Nanotechnol. 24(1–14), 383001 (2013)

    Article  Google Scholar 

  9. Chein, W.R., Midtgaard, J., Shepherd, G.M.: Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278, 463–467 (1997)

    Article  Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  11. Collins, J.J., Imhoff, T.T., Grigg, P.: Noise-enhancement tactile sensation. Nature 383, 770 (1996)

    Article  Google Scholar 

  12. Simonotto, E., Riani, M., Seife, C., Roberts, M., Twitty, J., Moss, F.: Visual perception of stochastic resonance. Phys. Rev. Lett. 78, 1186–1189 (1997)

    Article  Google Scholar 

  13. Hidaka, I., Nozaki, D., Yamamoto, Y.: Functional stochastic resonance in the human brain: noise induced sensitization of baroreflex system. Phys. Rev. Lett. 85, 3740–3743 (2000)

    Article  Google Scholar 

  14. Toghraee, R., Mashl, R.J., Lee, I.K., Jakobsson, E., Ravaioli, U.: Simulation of charge transport in ion channels and nanopores with anisotropic permittivity. J. Comput. Electron. 8, 98–109 (2009)

    Article  Google Scholar 

  15. Van der Straaten, T.A., Kathawala, G., Trellakis, A., Eisengerg, R.S., Ravaioli, U.: BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation. Mol. Simul. 31, 151–171 (2005)

    Article  Google Scholar 

  16. Hwang, H., Schatz, G.C., Ratner, M.A.: Kinetic lattice grand canonical Monte Carlo simulation for ion current calculations in a model ion channel system. J. Chem. Phys. 127(1–10), 024706 (2007)

    Article  Google Scholar 

  17. Corry, B., Hoyles, M., Allen, T.W., Walker, M., Kuyucak, S., Chung, S.-H.: Reservoir boundaries in Brownian dynamics simulations of ion channels. Biophys. J. 82, 1975–1984 (2002)

    Article  Google Scholar 

  18. Boda, D., Busath, D.D., Eisenberg, B., Henderson, D., Nonner, W.: Monte Carlo simulations of ion selectivity in a biological Na channel: charge–space competition. Phys. Chem. Chem. Phys. 4, 5154–5160 (2002)

    Article  Google Scholar 

  19. Vasallo, B.G., Pardo-Galán, F., Mateos, J., González, T., Hedayat, S., Hoel, V., Cappy, A.: Stochastic model for action potential simulation including ion shot noise. J. Comput. Electron. 16, 419–430 (2017)

    Article  Google Scholar 

  20. Schmid, G., Goychuk, I., Hänggi, P.: Stochastic resonance as a collective property of ion channel assemblies. Europhys. Lett. 56, 22–28 (2001)

    Article  Google Scholar 

  21. Schmid, G., Goychuk, I., Hänggi, P.: Channel noise and synchronization in excitable membranes. Phys. A 325, 165–175 (2003)

    Article  MathSciNet  Google Scholar 

  22. Schmid, G., Goychuk, I., Hänggi, P., Zeng, S., Jung, P.: Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin–Huxley model. Phys. Biol. 1, 61–66 (2004)

    Article  Google Scholar 

  23. Adair, R.K.: Noise and stochastic resonance in voltage-gated ion channels. PNAS 100, 12099–12104 (2003)

    Article  Google Scholar 

  24. Faisal, A.A., White, J.A., Laughlin, S.B.: Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr. Biol. 15, 1143–1149 (2005)

    Article  Google Scholar 

  25. Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in nervous systems. Nature Rev. 9, 292–303 (2008)

    Article  Google Scholar 

  26. Läuger, P.: Shot noise in ion channels. Biochim. Biophys. Acta 413, 1–10 (1975)

    Article  Google Scholar 

  27. Brunetti, R., Affinito, F., Jacoboni, C., Piccinini, E., Rudan, M.: Shot noise in single open ion channels: a computational approach based on atomistic simulations. J. Comput. Electron. 6, 391–394 (2007)

    Article  Google Scholar 

  28. Schroeder, I., Hansen, U.-P.: Interference of shot noise of open-channel current with analysis of fast gating: patchers do not (yet) have to care. J. Membr. Biol. 229, 153–163 (2009)

    Article  Google Scholar 

  29. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolutions of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  30. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  31. Kuang, S., Wang, J., Zeng, T.: Intrinsic rhythmic fluctuation of membrane voltage evoked by membrane noise in the Hodgkin–Huxley system. Acta Phys. Pol. A 117, 435–438 (2010)

    Article  Google Scholar 

  32. Fishman, H.M., Poussart, D.J., Moore, L.E.: Noise measurements in squid axon membrane. J. Membr. Biol. 24, 281–304 (1975)

    Article  Google Scholar 

  33. García-Pérez, O., Alimi, Y., Song, A., Íñiguez-de-la-Torre, I., Pérez, S., Mateos, J., González, T.: Experimental assessment of anomalous low-frequency noise increase at the onset of Gunn oscillations in InGaAs planar diodes. Appl. Phys. Lett. 105(1–4), 113502 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz G. Vasallo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasallo, B.G., Mateos, J. & González, T. Ion shot noise in Hodgkin–Huxley neurons. J Comput Electron 17, 1790–1796 (2018). https://doi.org/10.1007/s10825-018-1229-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1229-2

Keywords

Navigation