Skip to main content
Log in

Statistical theory for hydrogen bonding fluid system of A a D d type (I): The geometrical phase transition

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The influence of hydrogen bonds on the physical and chemical properties of hydrogen bonding fluid system of A a D d type is investigated from two viewpoints by the principle of statistical mechanics. In detail, we proposed two new ways that can be used to obtain the equilibrium size distribution of the hydrogen bonding clusters, and derived the analytical expression of a relationship between the hydrogen bonding free energy and hydrogen bonding degree. For the nonlinear hydrogen bonding systems, it is shown that the sol-gel phase transition can take place under proper conditions, which is further proven to be a kind of geometrical phase transition rather than a thermodynamic one. Moreover, several problems associated with the geometrical phase transition and liquid-solid phase transition in nonlinear hydrogen bonding systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffrey G A. An Introduction to Hydrogen Bonding. Oxford: Oxford University Press, 1997. 11–202

    Google Scholar 

  2. Dore J C, Teixeira J. Hydrogen-Bonded Liquids. Dordrecht: Kulumer Academic Publishers, 1991. 89–405

    Google Scholar 

  3. Scheiner S. Hydrogen Bonding: A Theoretical Perspective. New York: Oxford University Press, 1997. 3–345

    Google Scholar 

  4. Geiger A, Stanley H E. Low-density “patches” in the hydrogen-bond network in liquid water. Phys Rev Lett, 1982, 49: 1749–1752

    Article  CAS  Google Scholar 

  5. Kalinichev A G, Bass J D. Hydrogen bonding in supercritical water. J Phys Chem A, 1997, 101: 9720–9727

    Article  CAS  Google Scholar 

  6. Stanley H E, Blumberg R L, Geiger A. Gelation models of hydrogen bond networks in liquid water. Phys Rev B, 1983, 26: 1626–1629

    Article  Google Scholar 

  7. Blumberg R L, Stanley H E, Geiger A, et al. Connectivity of hydrogen bonds in liquid water. J Chem Phys, 1984, 80: 5230–5241

    Article  CAS  Google Scholar 

  8. Tanaka F. Theory of thermoreversible gelation. Macromolecules, 1989, 22: 1988–1994

    Article  CAS  Google Scholar 

  9. Tanaka F, Stockmayer W H. Thermoreversible gelation with junctions of variable multiplicity thermoreversible gelation. Macromolecules, 1996, 27: 3943–3954

    Article  Google Scholar 

  10. Shoji M, Tanaka F. Theoretical study of hydrogen bonded supramolecular liquid crystals. Macromolecules, 2002, 35: 7460–7472

    Article  CAS  Google Scholar 

  11. Semenov A N, Rubinstein M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules, 1998, 31, 1373–1385

    Article  CAS  Google Scholar 

  12. Veytsman B A. Are lattice models valid for fluids with hydrogen bonds? J Phys Chem, 1990, 94: 8499–8500

    Article  CAS  Google Scholar 

  13. Panayiotou C, Sanchez I C. Hydrogen bonding in fluids. J Phys Chem, 1991, 95: 10090–10097

    Article  CAS  Google Scholar 

  14. Veytsman B A. Equation of state for hydrogen-bonded systems. J Phys Chem B, 1998, 102: 7515–7517

    Article  CAS  Google Scholar 

  15. Aghamiri S F, Modarres H, Mansoori G A. A new approach to the hydrogen bonded fluids based on the conformal solution concept. J Phys Chem B, 2001, 105: 2820–2825

    Article  CAS  Google Scholar 

  16. Erukhimovich I Y. Statistical theory of sol-gel transition in weak gels. JETP, 1998, 31: 1373–1385

    Google Scholar 

  17. Fecko C J, Eaves J D, Loparo J J, et al. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science, 2003, 301: 1698–1702

    Article  CAS  Google Scholar 

  18. Flory P J. Principles of Polymer Chemistry. New York: Cornell University Press, 1953. 347–398

    Google Scholar 

  19. Stockmayer W H. Theory of molecular size distribution and gel fraction in branched-chain polymers. J Chem Phys, 1943, 11: 45–55

    Article  CAS  Google Scholar 

  20. Tang A C. Statistical Theory of Polymeric Reactions. Beijing: Science Press, 1981. 1–66

    Google Scholar 

  21. Tang, A C, Jiang Y S. The problems of gelations of three dimensional polycondensation reactions. Science Record, 1958, II(3): 110–115

    Google Scholar 

  22. Xiao X C, Li Z S, Sun C C, et al. Intrinsic symmetry of the A a B b type distribution. Macrolmol Theo Simul, 1994, 3: 601–606

    Article  CAS  Google Scholar 

  23. Wang H J, Ba X W, Zhao M. Reaction dynamics and statistical theory for the growth of hydrogen bonding clusters. Sci China Ser B-Chem, 2002, 45(2): 113–121

    Article  CAS  Google Scholar 

  24. Sawada H. Thermodynamics of Polymerization. Translated in Chinese by Yan H K, Jin S J. Beijing: Science Press, 1985. 153–197

    Google Scholar 

  25. Wang H J, Ba X W, Zhao M, et al. The scaling study for the hydrogen bonding networks. Chem Phys Lett, 2001, 342: 347–352

    Article  CAS  Google Scholar 

  26. Li Z S, Xiao X C, Sun J Z, et al. The intrinsic invariant property of the number faction distribution of polymers. Sci China Ser B-Chem (in Chinese), 1993, 23(9): 897–904

    Google Scholar 

  27. Coniglio A, Stanley H E, Klein W. Solvent effects on polymer gels. Phys Rev, 1982, B25: 6805–6821

    Google Scholar 

  28. Stanley H E. Introduction to Phase Transitions and Critical Phenomena. Oxford: Oxford University Press, 1971. 1–18

    Google Scholar 

  29. Eyring H, Henderson D, Stover B J, et al. Statistical Mechanics and Dynamics. New York: John Wiley & Sons Inc, 1964. 354–382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Haijun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Hong, X., Gu, F. et al. Statistical theory for hydrogen bonding fluid system of A a D d type (I): The geometrical phase transition. SCI CHINA SER B 49, 499–506 (2006). https://doi.org/10.1007/s11426-006-2034-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-006-2034-5

Keywords

Navigation