Skip to main content
Log in

Structural and Thermodynamic Properties of Van der Waals Fluids via a Hard-Core Sutherland Potential

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The structural and thermodynamic properties of the Van der Waals fluids are determined at a wide range of densities and temperatures. For this purpose, the second-order Barker and Henderson perturbation approach is used with an effective pair intermolecular interaction model involving a hard-core repulsion coupled with an attractive tail in the Sutherland function. A developed analytical expression for the radial distribution function of hard spheres is used to account for the reference fluid contribution. A good prediction is made for calculating the static structure factor S(k), Helmholtz free energy (A), compressibility factor (Z), and isothermal compressibility (κT) for the argon and nitrogen fluids. Furthermore, the calculated results are developed when the contribution of many-body interactions is accounted for using an effective pair potential in which its intermolecular parameters are dependent on the thermodynamic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 2006).

    Google Scholar 

  2. J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).

    Article  CAS  Google Scholar 

  3. Y. Rosenfeld and R. Thieberger, J. Chem. Phys. 63, 1875 (1975).

    Article  CAS  Google Scholar 

  4. D. D. Carley and A. C. Dotson, Phys. Rev. A 23, 1411 (1981).

    Article  Google Scholar 

  5. B. J. Alder, D. A. Young, and M. A. Mark, J. Chem. Phys. 56, 3013 (1972).

    Article  CAS  Google Scholar 

  6. R. Dickman and C. K. Hall, J. Chem. Phys. 89, 3168 (1988).

    Article  CAS  Google Scholar 

  7. K. G. Honnell and C. K. Hall, J. Chem. Phys. 90, 1841 (1989).

    Article  CAS  Google Scholar 

  8. W. G. Chapman, G. Jackson, and K. E. Gubbins, Mol. Phys. 65, 1057 (1988).

    Article  CAS  Google Scholar 

  9. M. Banaszak, Y. C. Chiew, and M. Radosz, Phys. Rev. E 48, 3760 (1993).

    Article  CAS  Google Scholar 

  10. F. W. Tavares, J. Chang, and S. I. Sandler, Mol. Phys. 86, 1451 (1995).

    Article  CAS  Google Scholar 

  11. J.-P. Hansen and J. B. Hayter, Mol. Phys. 46, 651 (1982).

    Article  CAS  Google Scholar 

  12. M. Badia, A. Maarouf, K. ELhasnaoui, et al., Sop Trans. Appl. Phys. 1, 2372 (2014).

    Google Scholar 

  13. J. K. Johnson, E. A. Muller, and K. E. Gubbins, J. Chem. Phys. 98, 6413 (1994).

    Article  CAS  Google Scholar 

  14. F. A. Escobedo and J. J. de Pablo, Mol. Phys. 87, 347 (1996).

    Article  CAS  Google Scholar 

  15. M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).

    Article  Google Scholar 

  16. E. J. Thiele, J. Chem. Phys. 39, 474 (1963).

    Article  Google Scholar 

  17. L. Verlet and D. Levesque, Physica (Amsterdam, Neth.) 36, 254 (1967).

  18. W. R. Smith, D. Henderson, and R. D. Murphy, J. Chem. Phys. 61, 2911 (1974).

    Article  CAS  Google Scholar 

  19. G. J. Throop and R. J. Bearman, J. Chem. Phys. 42, 2408 (1965).

    Article  CAS  Google Scholar 

  20. F. Mandel, R. J. Bearman, and M. Y. Bearman, J. Chem. Phys. 52, 3315 (1970).

    Article  CAS  Google Scholar 

  21. W. R. Smith and D. Henderson, Mol. Phys. 19, 411 (1970).

    Article  CAS  Google Scholar 

  22. G. Kahl, Mol. Phys. 67, 879 (1989).

    Article  CAS  Google Scholar 

  23. J. Largo and J. R. Solana, Fluid Phase Equilib. 167, 21 (2000).

    Article  CAS  Google Scholar 

  24. J. Largo and J. R. Solana, Int. J. Thermophys. 21, 899 (2000).

    Article  CAS  Google Scholar 

  25. J. Chang and S. I. Sandler, Mol. Phys. 81, 735 (1994).

    Article  CAS  Google Scholar 

  26. J. Chang and S. I. Sandler, Mol. Phys. 81, 745 (1994).

    Article  CAS  Google Scholar 

  27. J. A. Barker and D. Henderson, J. Chem. Phys. 47, 2856 (1967).

    Article  CAS  Google Scholar 

  28. J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714 (1967).

    Article  CAS  Google Scholar 

  29. J. L. Yamell, M. J. Katz, R. G. Wenzel, and S. H. Koenig, Phys. Rev. 7, 2130 (1973).

    Article  Google Scholar 

  30. J. C. Dore and G. Wolford, Mol. Phys. 29, 565 (1975).

    Article  CAS  Google Scholar 

  31. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  CAS  Google Scholar 

  32. H. C. Andersen, D. Chandler, and J. D. Weeks, Adv. Chem. Phys. 34, 105 (1976).

    CAS  Google Scholar 

  33. R. B. Stewart and R. T. Jacobsen, J. Phys. Chem. Ref. Data 18, 639 (1989).

    Article  CAS  Google Scholar 

  34. R. T. Jacobsen, R. B. Stewart, and M. Jahangiri, J. Phys. Chem. Ref. Data 15, 735 (1986).

    Article  CAS  Google Scholar 

  35. B. Schroer, Phys. Rev. B 8, 4200 (1973).

    Article  Google Scholar 

  36. A. K. Wyczalkowska, J. V. Sengers, and M. A. Anisimov, Phys. A (Amsterdam, Neth.) 334, 482 (2004).

Download references

ACKNOWLEDGMENTS

The financial support of the Shahrood University of Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nikoofard.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matinifard, S., Nikoofard, H. Structural and Thermodynamic Properties of Van der Waals Fluids via a Hard-Core Sutherland Potential. Russ. J. Phys. Chem. 96, 2823–2828 (2022). https://doi.org/10.1134/S0036024422130143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422130143

Keywords:

Navigation